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We wish to thank the editors of MISQ for inviting this com-
mentary in response to the Issues and Opinions piece by
Goodhue, Lewis, and Thompson (hereinafter GLT).  We must
admit we were somewhat surprised when we received a
lengthy Issues and Opinions paper that responded to our
slightly over four page (published) Foreword to the 2009 MIS
Quarterly Special Issue on PLS (Marcoulides et al. 2009).
Our short Foreword was merely designed to provide an over-
view of the special issue and alert the MISQ audience to the
importance of making correct comparisons between PLS and
other statistical modeling techniques.1

We were even more surprised that the Issues and Opinions
paper displays imprecise statements and attenuates concerns
about questionable comparisons of PLS with other statistical
techniques.  This matter is particularly disconcerting when
one reflects on the statements provided by Professor Schnee-
weiss (see Appendix B3 in Goodhue et al. 2012a) when asked
by GLT whether PLS and other techniques can be legitimately
compared.  Our interpretation differs from that of GLT in that
Professor Schneeweiss’ statements seem rather to caution

GLT that it all depends on what is meant by comparing the
different methods and that comparing different results arising
from different entities does not make much sense, since the
methods are to begin with dissimilar.  It seems that GLT
failed to recognize that their recommended procedure is akin
to comparing apples to oranges and we therefore caution
readers about using their paper as the basis or justification for
future Monte Carlo comparison studies.

Often applied researchers do not pay sufficient attention to the
stochastic assumptions underlying particular statistical
models.  Such lack of attention to espoused statistical theory
can also divert focus from precise statistical statements,
analyses, and applications, by purporting to do what cannot be
legitimately done with the particular recommended approach
and even encouraging others to engage in making com-
parisons that offer little value.  In many ways, this lack of
attention and precision is reminiscent of Karl A. Fox’s (1980,
p. 33) argument that “between substantive research and
statistical theory there is a long distance, and even some
hostility.”

As was the case in the Goodhue, Lewis, Thompson (2006)
HICSS article and in Goodhue, Lewis and Thompson
(2012b), we believe that their suggested model comparisons

1Ron Cenfetelli was the accepting senior editor for this paper.  Geneviève
Bassellier served as the associate editor.
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are simply not correct (which, as we elaborate in later
sections, are due to incorrect parameterizations).  In what
follows, we address some of our main concerns with the GLT
piece, primarily because modeling is currently enjoying such
widespread popularity and it would be irresponsible on our
part not to voice our serious concerns about an approach that
could become part of the structural equation modeling (SEM)
literature (we note the term SEM is used here generically and
interchangeably to refer to path analytic models with latent
variables, covariance-based models, or simply latent variable
models).2

While our comments here may strike some readers as critical,
our concerns are genuine and pertinent to promote the
development and enrichment of the concepts and practices
that emerge from any empirical research using such modeling
techniques.  Unfortunately, statistical issues and assumptions
that may appear incidental to an applied researcher’s sub-
stantive ideas can and often do become stumbling blocks that
invalidate their models.  We hope to at least alert such users
to the right course of action in this specific modeling research
paradigm.
  
We begin our response with a discussion of some key defini-
tions and what we mean by the terms parameterization and
correct parameterization.3  Then, we collectively address the
five interrelated issues identified by GLT in the main body of
their Issues and Opinions piece and elaborated on further in
Appendix A.  In this section we show how imprecise state-
ments in GLT’s piece can lead to problems, statistically
speaking.  Given that the title of the GLT paper indicates that
it is a response to our Foreword, we believe we should
primarily focus our discussion viz our original Foreword.
Nonetheless we feel compelled to point out our concerns
regarding the assumptions and proposed process presented by
GLT.  Along the way we also offer some guidance to
resources that are readily available in the literature outlining
how one can conduct legitimate comparisons and how to

indicate limitations in making comparisons.  Our intent in this
response is to share with you our major concerns with the
GLT piece.  It is not our intent, however, to provide a lengthy
tutorial on how to conduct legitimate comparisons among
statistical techniques, how to specify the correct param-
eterization of models, or to detail all inaccuracies present in
the GLT piece.

Accuracy and Precision:
The Five Issues

Issue 1:  Incorrect Parameterization

In order to ensure precision of notation and definitions, we
begin by offering some basic modeling terminology.  It is
important to distinguish between the definitions of a popula-
tion parameter and parameterization.  A parameter for a speci-
fic population of interest is a quantity or statistical measure
that, for a given population, is fixed and that is used as the
value of a variable in some general distribution or frequency
function to make it descriptive of that population.  Thus
parameters are population quantities (e.g., like the mean or
variance), which characterize a population distribution on a
variable of interest.  In other words, a population parameter
can be viewed as a numerical summary of the population.

On the other hand, parameterization is merely the speci-
fication of the parameters of a model.  The term is very com-
monly used in the SEM literature.  For example, the commer-
cially available program Mplus (Muthén and Muthén 2010)
uses the command “PARAMETERIZATION = ” to enable
researchers to specify a variety of models according to a par-
ticular model structure.  In a particular confirmatory factor
analytic model when a “delta” parameterization is used, scale
factors are allowed to be parameters in the model but residual
variances are not, whereas when a “theta” parameterization is
used, residual variances are allowed to be parameters in the
model but scale factors are not.  None of the definitions
offered by GLT in their Issues and Opinions article deal with
the specification of the parameters of a model.  Hence, we
consider them inappropriate and recognize that we need to
elaborate here on the definition of parameterization, as well
as offer some additional details on basic modeling termi-
nology.

Let us consider x as a stochastic p-vector of observed
variables with population variance-covariance (or correlation)
matrix Σ.  Now, let us further consider the free parameters in
a proposed model be contained in the q-vector θ.  A structural
equation model then implies a certain parameterization Σ(θ)
of the variance–covariance matrix of the observed variables.

2A major reason for the frequent use of SEM is that it allows one to posit
complex multivariable relationships among observed and latent variables
whereby direct and indirect (mediated) effects are straightforwardly evaluated
along with indexes of their estimation precision.  Another major reason
appears to be the availability of simple to use computer programs that require
very little technical knowledge of the statistical models underpinning the
modeling techniques.  Unfortunately, methods and notions that are widely
available and represented in user-friendly software packages risk the
tendency to be quickly abused. Indeed, as indicated by Cortina (2002),
structural equation modeling may be the best example of this phenomenon.

3We note that the word parameterization is spelled throughout using
American English, but can also be alternatively spelled using British English
as parametrization (see Dijkstra  1983, p. 71).
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The null hypothesis specifically states that the structural equa-
tion model is correctly specified.  This signifies that there are
parameter values such that the model implied variance–
covariance matrix equals the population variance–covariance
matrix.  Mathematically, this can be simply written as H0:  Σ
= Σ(θ), for some θ.  In other words, we say that the model
holds if there exists a parameter value θ0 such that Σ = Σ(θ0).
For correctly specified models, a minimum distance estimator
of θ0 can be obtained (e.g., a maximum likelihood estimator),
which is asymptotically distributed according to a χ² distri-
bution.  A structural equation model is then said to hold if
there exist values for the free parameters such that the model
implied variance–covariance matrix equals the population
variance–covariance matrix Σ of the observed vector x.
Consequently, in any attempted data simulation studies, the
correct parameterization Σ(θ) of the variance–covariance
matrix of the observed variables is essential.  Any deviations
beyond those expected by estimating the model with respect
to the sample covariance matrix (which introduces sampling
variability) implies differential parameterization that is
independent of the estimation method used (Issue 1).

So what might go wrong if one were to differentially param-
eterize a structural equation model?  As an example, let us
first consider a very special case in which the three path
models displayed in Figure 1 are differentially parameterized
(for complete details, see Hershberger 2006; Hershberger and
Marcoulides forthcoming).  We note that for simplicity these
models only contain three observed variables, but could easily
be expanded to more complicated models including ones with
latent variables.  The parameters for each of the three pro-
posed models in the q-vector θ set are respectively as follows:

As it turns out, and despite the different parameterizations of
the three models, they all have the exact same variance–
covariance matrix implied by the parameter estimates.  Such
models are commonly referred to in the structural equation
modeling literature as equivalent models (and there can
potentially be an infinite number of such equivalent models,
as initially introduced to the IS discipline by Chin (1998a; see
Raykov and Marcoulides [2001, 2007] and references therein
for details).  We hasten to note that model equivalence is not
defined by the data, but rather by an algebraic equivalence
between model parameters.  In other words, if a researcher
were to use a different data set, the resulting implied

variance–covariance matrices estimated from each of the three
models could be the same even though the estimated path
estimates may differ.  As a result, in such cases of model
equivalence, the values for the tests of model fit (e.g., chi-
square) will always be identical (see Hershberger and
Marcoulides forthcoming).

This highlights one of our concerns with GLT’s narrow focus
targeting mainly on comparing path estimates.  Their Figure
1 may mislead readers into believing there can only be one
correct path estimate when this is not necessarily true if
equivalent models exist.  Correct parameterization of an SEM
model involves all parameter estimates in a holistic manner as
they connect to one another to generate the implied variance–
covariance matrix.  But in cases not involving equivalent
models, differentially parameterized models will lead to a
variety of results (i.e., different parameter estimates in θ,
different variance–covariance matrices, different values of
tests of model fit, etc.).  

As a further example, let us consider the situation of per-
forming a canonical correlation analysis using either co-
variance or partial least squares estimation.  Figure 2 shows
three different model specifications, but all reflect the same
canonical correlation analysis.  Model 4 follows the MIMIC
representation of the canonical model for covariance estima-
tion (Bagozzi et al. 1981, p. 444) whereas Model 5 is an
equivalent using PLS.  Finally, Nodel 6 is the standard PLS
representation for a canonical correlation (Chin, 1998b, p.
307).  As in the previous example, independent of the data set
being analyzed, all three models are equivalent and can be
used to obtain the same estimates (i.e., the canonical corre-
lation, canonical weights, and predictor variate cross
loadings).  Yet, the model specifications for path parameters
to be estimated are not the same.  Note that Model 4 has one
construct, Model 5 has four constructs, and Model 6 has two
constructs.  The PLS Model 6 provides estimates of the
canonical correlation and variate weights and loadings.  You
need to multiply the canonical correlation with the weights
from the first variate C1 in Model 6 to match the path
estimates in Model 5.  To obtain the canonical correlation for
Models 4 and 5, the square root of the first eigenvalue can be
calculated as 

where y represents the Vint indicators.

If we were to follow the procedure advocated by GLT, we run
into problems.  In order to obtain an estimate of the canonical
correlation between two variate weights, GLT would have us
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Model 1

Model 2

Model 3

Figure 1.  Three Differentially Parameterized Models

explicitly model two constructs and specify a “measurement
model” to represent the same “underlying reality.”  GLT state
that the first three boxes leading to the choosing of a statis-
tical technique are essentially the same regardless of which
statistical technique is ultimately used; that all three tech-
niques assume the same underlying reality (more on this issue
later), the same research model, and the same data collected. 
Only then, GLT argue, can we compare and contrast specific
path estimates and their significance (p. 4).  Yet, as depicted
in our Models 4 and 5, we do not need to explicitly model two
underlying constructs and the path between them to obtain the
canonical correlation.  In fact, due to identification con-
straints, SEM cannot be used to analyze Model 6.

Issue 2:  Comparisons to Regression
Are Trivial

Now let us move onward to the situation where differentially
parameterized models yield different results to further high-

light our central concerns with the GLT piece.  As indicated
in our Foreword, any comparison of the performance of
multiple regression relative to either PLS or SEM is trivial
since it is well known that an analysis of the same data and
model based on a single regression equation using these
approaches will always yield identical results (Issue 2).  This
is because regression analysis is a first generation technique
that is subsumed under the second generation techniques of
PLS and SEM (e.g., Chin 1998b, pp 296-297).  Therefore,
GLT’s inclusion of the second columns in Tables 1 and 2 and
similar boxes in Figure 1 to highlight regression analysis as
on par with PLS and SEM is unnecessary since one could
mathematically expect the results to be the same.

The key question is how composites are formed prior to
conducting the regression analysis.  Once the decision is made
on how to similarly create composite scores, running these
scores using PLS, SEM, or regression will end up with
exactly the same estimates.
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Model 4.  Multiple Indicator/Multiple Cause (MIMIC) Mode for Canonical Correlation Analysis Using AMOS

Model 5.  MIMIC Model for Canonical Correlation Analysis Using PLS-Graph

Model 6.  Standard Model Specification for Canonical Correlation Analysis Using PLS-Graph

Figure 2.  Three Different Models Using Covariance ML Estimation (Model 4) and Partial Least Squares
(Models 5 and 6).  For Models 5 and 6, indicator variate correlates are in parentheses.
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Are there cases where these methods might actually yield
different results?  The answer is a definitive yes!  It can occur
when you differentially parameterize the measurement model. 
Such is the case with the model GLT presented and adapted
from Goodhue et al. (2006).  For the regression model, GLT
indicated that they “chose the most common approach used in
practice:  equal indicator weights” (p. 712), versus the com-
posite scores estimated by PLS or path estimates by LISREL
(i.e., where the factors are presented for ξ1, ξ2, ξ3, etc.).  If one
were to run analyses as just defined, you would likely get very
different coefficient estimates.  Does that imply that the
methods differ in their estimation?  Absolutely not!  Any
observed differences would merely be a function of the
differentially parameterized models being analyzed (i.e., unit
weights for regression, PLS weights for PLS, and covariance
path estimates for LISREL).  If you were to select unit
weights for all three techniques, the results would once again
be identical.

Continuing on this point, for ease of presentation and sim-
plicity, let us focus on regression analysis (although the same
argument could readily be made for any of the other modeling
techniques examined).  In their Table 2, GLT indicated that
when using the regression approach for each supposed
construct “indicator weights must be prespecified – often set
to equal.  Or can use factor weights” (p. 711).  They opted
not to use exploratory factor analysis to determine the
appropriate weights for each indicator because they
considered the use of equal weights to be “the most common
approach used in practice” (p. 10).  Thus, to make our point
we use both of these types of construct scores in a simple
regression analysis (we return in more detail to the issue of
construct measurement in a later section).  The regression
analysis examines an outcome variable and the predictive
capabilities of construct scores determined on the basis of five
indicators and a realistic sample size of n = 120.

Using the above two types of construct scores in a regression
analysis using SPSS, leads to the output provided in Figures
3 and 4.  As can be readily seen by examining the output
presented in Figures 3 and 4, the values of the R square, the
standard error of estimate, the beta weight, the t-value, the
significance test statistic, the intercept value (the constant),
etc. are all the same!  However, there is one value that is
different:  the value of the regression coefficient estimate (and
its standard error) for the construct scores obtained when
taking the straight average of the indicators (XAVERAGE)
which are of equal weights is quite different than that of the
regression coefficient estimate (and its standard error)
obtained using the factor analytic approach (XWEIGHTS).
We note that everything else related to this estimated
parameter is the same for both types of construct scores.

So now we ask, does that imply that the two regression
methods differ in their estimation?  Absolutely not!  Both
models were examined using the same simple linear regres-
sion technique.  Any observed differences are merely a
function of the differentially parameterized models being
analyzed.  In this case, a parameterization using the straight
average of the indicators as construct scores versus using
exploratory factor analysis to determine the appropriate
weights for each indicator and then computing construct
scores led to the differences in the results.  It is obvious that
the same argument could readily be made when making
comparisons between any of the other techniques.

Now take our earlier canonical correlation case as another
example.  If we use a straight average to create two variates
and submit them to SEM, PLS, and regression analyses, we
obtain exactly the same correlation estimate of 0.58 for all
three techniques.  If we instead differentially weight each
indicator consistent with the first principal component, the
estimate changes to 0.587.  But the change is identical for all
three analyses.  Thus, the fourth box in Figure 1 and step 1 in
Figure 4 as proposed by GLT is problematic because they
confound the estimation procedure with differences in how
the measures are parameterized.

Issue 3:  Distinguish Between Latent
Constructs and Composite Variables

We argue that it is important to distinguish between latent
constructs and composite variables when performing
legitimate comparisons.  GLT’s comparison problem might
simply be a function of the so-called formative versus
reflective (composite versus latent variables) measurement
debate (see Hardin and Marcoulides 2011 and references
therein), particularly because many of these publications are
believed to have misinformed readers due to the lack of
theory underlying formative measurement and a misinterpre-
tation of the early psychometric literature (Issue 3).  GLT
readily acknowledge that “statistical techniques using com-
posites and those using latent variables are quite distinct”  (p.
705).  Unfortunately, and despite the overwhelming statistical
evidence provided in the literature (see Hardin et al. 2011;
Hardin and Marcoulides 2011; Marcoulides et al 2009
Treiblmaier et al. 2010), GLT then obfuscate matters by
stating that “both composites and latent variables are intended
to represent the same things:  theoretical constructs that are
not directly observable” (p. 711).  This statement makes no
distinction between composites and latent variables.  This
lack of statistical precision and accuracy is especially prob-
lematic in the case of formative measurement.
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Figure 3.  Regression

Figure 4.  Regression

Model Variables Entered
Variables
Removed Method

1 XAVERAGEa Enter

a.  All requested variables entered.
b.  Dependent Variable:  V1

Model R Adjusted R Square
Std. Error of 
the Estimate

1 .489a 1.092.239

R Square

.195

a.  Predictors:  (Constant), XAVERAGE

Model
Unstandardized Coefficients

Standardized 
Coefficients

T Sig.B Std. Error. Beta
1  (Constant)
    XAVERAGE

1.308
.422

.604

.182 .489
2.165
2.312

.045

.034
a.  Dependent Variable:  V1

Note:  The output labeled “XAVERAGE” corresponds to the straight average of 
the indicators used as construct scores in the regression.

Variables Entered/Removedb

Model Summary

Coefficientsa

Model Variables Entered
Variables
Removed Method

1 XWEIGHTSa Enter

a.  All requested variables entered.
b.  Dependent Variable:  V1

Model R Adjusted R Square
Std. Error of 
the Estimate

1 .489a 1.092.239

R Square

.195

a.  Predictors:  (Constant), XWEIGHTS

Model
Unstandardized Coefficients

Standardized 
Coefficients

T Sig.B Std. Error. Beta
1  (Constant)
    XWEIGHTS

1.308
.105

.604

.046 .489
2.165
2.312

.045

.034
a.  Dependent Variable:  V1

Note:  The output labeled “XWEIGHTS” corresponds to construct scores in the regression 
that were determined as weights based on an exploratory factor analysis .

Variables Entered/Removedb

Model Summary

Coefficientsa
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Hardin and Marcoulides (2011, p. 2) noted that the statistical
ideology behind a latent variable is quite elementary:  

If a latent variable underlies a set of observed vari-
ables or indicators, then conditioning the indicators
on the latent variables makes those indicators
statistically or conditionally independent (also refer-
red to as local independence; see Raykov and
Marcoulides 2011).

Latent variable measurement then concerns the process of
ensuring that local independence is satisfied for a selected set
of observed variables or indicators and this can be done via
the use of a model such as a common factor model.  The
common factor model then stipulates that the correlations
among the observed variables can be explained by their
regression on the latent variable (this guarantees that the
observed variables are independent after conditioning on the
latent variable).

In formative measurement, the relationship between the
observed variables and the composite is reversed, whereby the
composite is regressed on its observed variables.  This can be
readily denoted following Treiblmaier et al.’s (2010) and
McCallum and Browne’s (1993) recommended convention of
distinguishing between composite variables as F and latent
variables as F.  Thus, in models with x observed variables,
formative models would be said to have x 6 F paths, whereas
reflective models have F 6 x.  We note that extensive
discussions on this topic have recently been offered by
Bagozzi (2011), Bollen (2011), Chin (2010), Diamantopoulos
(2011), Edwards (2011), Hardin et al. (2011), Hardin and
Marcoulides (2011), and Treiblmaier et al. (2010), so there
really is no need to rehash the complete contents of these
papers here.  We recommend these papers to any researchers
needing both a historical and thorough understanding of the
debate in the literature.  Suffice it to say, however, that
operationalizing formative models as closely matched com-
mon factor equivalents does not eliminate the issue that they
are differentially parameterized models( in other words, an x
6 F path is not the same as a x 6 F path).  Although a new
methodology for unambiguously implementing an F that will
closely approximate an F has recently been proposed by
Treibmaier et al.  Thus, a comparison between PLS and SEM
based on models generated through such a methodology
would indeed be of interest (although research still needs to
be done to determine the actual degree of correspondence
between F and F).  Implementing this approximation,
however, requires a two-step approach that splits the deter-
minate part of the formative composite into two or more
composites and then models them as latent variables (i.e.,

common factors, which can then theoretically also be placed
into any much larger latent variable modeling framework).

The new approach offered by Treiblmaier et al. operation-
alizing formative models as closely matched common factor
equivalents was not utilized in the GLT study.  In fact, neither
was any other appropriate approximation method.  What was
done is a simple substitution of estimates for the Fs.  And
although it is the case that in PLS estimation, substitution of
estimates for F is routinely done, there are well-known and
clear consequences (see complete details in Treiblmaier et
al.), not the least of which that “not all parameters will be
estimated consistently” (Dijkstra 2010, p. 37).  Professor
Dijkstra also added that “PLS replaces latent variables by
proxies who can ‘never’ represent them exactly….So the
parametrization for the proxies is incorrect” (Dijkstra, e-mail
to Authors, January 26, 2010).

Finally, we should mention our concern with the rather rigid
assumption provided by GLT in the first box of their Figure
1 process.  Here GLT state that all researchers begin with the
positivist goal of uncovering an underlying reality and seem
to imply that this objective is true for all three techniques.
We are less sanguine regarding this position.  In the case of
PLS, for example, Dijkstra (2010, p. 23) argues that PLS is
better suited for constructing composites “that extract
information from high-dimensional data in a predictive, useful
way.” In agreement, Chin (2010) noted that eschewing the
“true” model for prediction focus can be a rationale for the
use of PLS and is “more akin to the American philosophical
perspective of pragmatism” (p. 668) than a pure positivist
perspective.  Schneeweiss (1991), in fact, clearly states that
PLS does not necessarily impose GLT’s stipulation that all
techniques assume underlying “theoretical constructs that are
not directly observable” (p. 705).  Specifically, Schneeweiss
(1991, p. 155) notes that

The PLS model is defined on a set of jointly distri-
buted random variables by partitioning this set into
disjoint subsets and by specifying dependencies
between these sets.  No further assumptions are
required.  The PLS parameters and latent variables
can be defined so as to represent these dependencies
in a concise fashion.  So long as the iterative PLS
procedure defining these entities converges, they are
well defined, irrespective of any specific model
structure, in particular irrespective of whether a
LISREL model pertains or not.

As for regression, it does not take a position on how com-
posites are formed.  Rather, variables are simply deployed
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(calculated composites or otherwise) and the dependent vari-
able is studied as a function of other independent variables.
Thus, it is unclear why GLT state that “regression assumes
that each construct has a knowable value that is a composite
of its equally weighted indicator scores….[and that]
regression techniques require estimating construct scores” (p.
709).  Our search through the entire 703 pages of Cohen et al.
(2003), as a check, failed to uncover such prescriptions.

Issue 4:  The Ratio of the Largest Eigenvalue
to the Sum of the Squared Loadings and
Issue 5:  The Number of Indicators

As indicated by Marcoulides et al. (2009) and McDonald
(1996), consistent estimates will be obtained when the number
of indicators goes to infinity (Issue 5), in practical situations
this does not often occur and it did not occur in the Goodhue
et al. (2006) Monte Carlo comparison study.  We note that to
date the actual degree of correspondence between F and F in
practice has yet to be determined, so this is one area where
more research is clearly needed, but, we would suggest, not
by using the methods suggested by GLT.

Mathes (1993) also showed that PLS can be regarded as
providing approximate estimates of a very specific common
factor model.  This notion was furthermore emphasized by
Schneeweiss (1993), who indicated that the two types of
approaches are related to each other and in some specific
situations can come quite close to each other (for further
details, see equations 9 through 12 in Schneeweiss).  As
indicated in our Foreword (Issue 4), 

the key to governing the closeness of PLS to SEM
latent variables for a particular block is the ratio of
the largest eigenvalue of the error covariance matrix
to the sum of squared loadings.  In situations where
this ratio, or by the model specified, is made small
(e.g., path coefficients and loadings), estimates
obtained from PLS and SEM will be very close to
each other or approximately equal (p. 173).

The fact that one can obtain approximate estimates in PLS has
been known for decades (see also McDonald 1996;
Tenenhaus 2007 and references therein).  Tenenhaus (2007)
even provided a complete table (Table 9) of the approxi-
mations for a very specific parameterized model case (.206
versus .199, .163 versus .173, etc), which he called the
Fornell case:  when all the coefficient weights or loadings
relative to a “latent variable” are of the same sign and the
observed variables are of comparable order of magnitude (see
also Fornell and Bookstein, 1982).  So the differences

between the approaches as a function of approximations are
quite well known.  Tenenhaus even showed the differences
between parameter values for the Fornell model estimated by
a so-called LISREL type model (they actually used the
AMOS program to obtain the estimates) and PLS (Customer
Expectation 6 Perceived Quality =.545 for PLS estimates
versus .856 for LISREL).  They note that the differences
between PLS and LISREL estimates of a causal model come
from the order in which model parameters and latent variable
or composites are calculated, and from the constraints on
these.  This is because in PLS the reflective scheme assumed
for the latent variable is inverted (this was also pointed out by
Marcoulides et al.).

A study that appears to be prominently referenced by GLT,
albeit inappropriately as an exemplary study for comparing
the efficacy of PLS with that of regression and/or CB-SEM,
is one by Hwang et al. (2010).  Thus, in order to set the record
straight we also provide a synopsis of this study and address
the issue of the viability of their comparisons.  Hwang et al
(pp. 701-702) clearly recognize the differences between the
approaches in terms of model specification and parameter
estimation ahead of any analyses conducted and indicate that

this leads to the specification of different sets of
model parameters for latent variables (i.e., factor
means and/or variances in covariance structure
analysis versus component weights in partial least
squares)….The algebraic formulations underlying
the three approaches seem to result in substantial
difference in the procedures of parameter estimation.

They go on to point out again that the “approaches estimate
different sets of model parameters….Thus, in this study we
evaluate and report the recovery of the estimates of a common
set of parameters” (p. 703).  They conclude by readily
acknowledging their inability to provide correctly param-
eterized comparisons among the approaches and indicate
that “we generated simulated data on the basis of covariance
structure analysis….we adopted the procedure because it was
rather difficult to arrive at an impartial way of generating
synthetic data for all three approaches” (p. 710).  These state-
ments carefully stipulate the precise conditions of their
analysis and fully acknowledge the limitations of their
“comparisons” between apples and oranges.

Comparing Apples with Oranges

Can one really compare apples with oranges?  Certainly one
can, but why would such a comparison be interesting or make
sense?  Is it to determine the difference between a green apple
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(which might even be that color due to its type) with a green
orange (which is most likely that color because it has not yet
ripened)?  Sure one can!  But what insight would one gain
from such a comparison?  Is it to show that green apples can
sometimes be eaten, whereas green oranges likely cannot?  If
so, fine.  But ultimately any intent to compare apples with
oranges must first acknowledge that one is comparing
different though related things (“we all different, but in the
end, we all fruit,” Gus Portokalos, “My Big Fat Greek
Wedding,” 2002).  The same holds for comparisons between
differentially parameterized models:  it is like comparing
apples with oranges! 

As indicated in our Foreword, “in summary, it should be clear
to the IS research community that comparison of PLS to other
methods cannot and should not be applied indiscriminately.”
As a discipline, we need to compare apples with apples and
oranges with oranges.  “Ignoring any of the above issues
could lead to incorrect conclusions or lead to overstating the
importance of outcomes observed in a study” (Marcoulides et
al. 2009, p. 174).  In their abstract, GLT claimed their Issues
and Opinions piece was written to give “an overview of the
process of comparison research with a focus on what is
required to make those comparisons legitimate” (p. 703).
Their justification was based on the one instance where our
Foreword had “already been used by at least one reviewer as
justification for recommending rejection of a comparison
paper submitted to a top-tier IS journal” (p. 704).  GLT admit
that they “sought to understand what MCS meant by the term
‘correct parameterization.’  [Yet,] ultimately, we were unable
to determine what specifically MCS were suggesting” (p.
704). 

Our intent in our short Foreword was not, as GLT suggest, to
“provide clear guidance on how to conduct ‘legitimate’
comparisons” (p. 703), but rather to provide an overview of
the papers in the Special Issue and to highlight a problem
common to a number of the submissions that were ultimately
not published.  Strategies for conducting legitimate compari-
sons are readily available in the literature (e.g., Treiblmaier et
al.2010).  In this response we have clarified what we meant
by correct parameterization and we have addressed our main
concerns about the GLT piece.
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