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Abstract

A principal selects a budget k of how many projects to fund within an

organization and then consults n agents, each of whom has private information

about his own project’s value. After receiving cheap talk reports from the agents

the principal decides which projects to implement subject to the budget, and

agents report on new i.i.d. projects every period until the budget is exhausted.

When the number of funded projects k < n and agents are biased towards their

own projects, competition between agents degrades the quality of information

conveyed in equilibrium and lowers the principal’s payoff. A larger budget

induces less competition and therefore may be selected in order to extract more

information from the agents, even though this will lead to some unprofitable

projects being adopted.
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1 Introduction

Information is often diffused throughout an organization, with less informed decision

makers relying on the advice of more informed agents. For example, the CEO of a

multi-division firm may consult division managers before determining which projects

to fund within the organization. A vast principal-agency literature has examined how

the decision maker can best cope when the agents’ incentives are misaligned with his

own. Potential solutions include fully delegating decision making authority to the

agent (Dessein 2002, Marino 2007) or more limited forms of delegation, in which

the principal retains the right to veto actions (Gilligan & Krehbiel 1987, Krishna &

Morgan 2001a, Lubensky & Schmidbauer 2016), or commits to exercise veto authority

only in restricted cases (Marino & Matsusaka, 2005). More generally performance can

be improved by restricting the agent’s choice to be from among those in an optimal

delegation set (Alonso & Matouschek, 2008), or in cases where competing agents are

consulted (Gilligan & Krehbiel 1989, Krishna & Morgan 2001a, 2001b, and Battaglini

2002).

In this paper I consider a model of project selection in which a single principal

consults multiple agents. Interests are aligned as respects which projects agents pre-

fer to select; for example, given a particular agent’s project will be adopted both

the principal and that agent prefer a more profitable project to a less profitable one.

However, since information is dispersed across agents who are biased in favor of their

own projects, a misalignment between the principal and each individual agent arises.

This is because when resources are limited agents must compete for the adoption

of their projects, causing each to recommend adoption more liberally than a fully

informed principal would prefer. Thus in this setting competition between agents

actually harms the principal by inducing acceptance of some undesirable projects.

However, when the principal controls the budget, and therefore the scarcity of re-

sources within the firm, the extent of competition is endogenous and thus so too is
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the incentive conflict between principal and agent. In other words, the marginal value

to the principal of a larger budget includes the shadow value of relaxing competition

between agents.

In my model a budget-setting principal decides which projects to adopt within an

organization. After announcing how many projects will be funded (the budget), the

principal receives reports from agents about the profitability of available projects.

Each project is “owned” by a single agent who privately observes its value and is

biased in favor of its adoption. Thus agent i does not observe agent j’s project,

the idea being that in modern organizations information is often compartmentalized

within highly specialized divisions. Whereas each agent prefers his own project be

adopted, the principal wishes to adopt the best projects irrespective of their source.

After receiving reports from all agents, the principal makes a binary decision to

accept or reject each project1, with new independently distributed projects available

and reported on each period until the budget is exhausted.

While a multi-division firm is a prime example of this setting, others can be found.

Consider the administrator of a government agency who has some discretion over how

its budget is spent. The administrator consults different units within the agency who

report on the social benefit from their own favored interventions, with the budget

rolling-over to next period if it is not depleted. A similar explanation applies to the

overseer of a charitable foundation or government agency when deciding which third

parties to award grants to; or to activists and lobbyists who advise a politician about

their own favored projects. As a final example, consider a business school dean who

decides how many new faculty positions to fund across the school. After the dean

announces the total number of positions, each department performs interviews to

learn the quality of their own best candidate. Upon receiving recommendations from

the departments the dean decides who to hire, or to continue the search next year if

1In an extension I allow the principal to adopt fractional projects.
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suitable candidates have not been found.

I study an environment without transfers in which agents’ messages are ex-post

unverifiable, and so the model is one of ‘competitive cheap talk’ (Li, Rantakari, &

Yang 2016) in a multi-period setting (Schmidbauer 2017). Implicitly, agents possess

“soft” information that the principal cannot acquire or verify. It is shown that agents’

equilibrium reporting strategies admit use of only two meaningful messages. Projects

exceeding a threshold value are recommended for acceptance while those below the

threshold are recommended for rejection. An agent that recommends rejection of his

own project is wagering that the budget will not be depleted by next period and that

he obtains a better project that is accepted then. For this reason the rate of time

discounting and the distribution of project values affects the equilibrium threshold

value. However, it also crucially depends on the size of the budget relative to the

number of competing agents, since this affects the likelihood the budget will be used

up.

Competition between agents is shown to harm communication and lower the prin-

cipal’s payoff. Each agent fears preemption by the other and so more freely rec-

ommends acceptance than the principal would prefer. However, competition can be

relaxed by the inclusion of an additional project to the budget: more funded projects

means the probability the budget is exhausted in any period decreases, inducing each

agent to more selectively recommend acceptance. Intuitively, when there are more re-

sources available within the firm there is less reason for an agent to exaggerate to gain

funding. A larger budget benefits the principal from the improved communication

resulting from decreased competition, a fact that has implications for the size of the

optimal budget. I find the principal may fund marginal projects that are unprofitable

themselves but improve communication overall, since this raises the expected payoff

from all recommended projects. Thus a static analysis that ignores the benefits of

improved communication can result in the possible underfunding of the budget. The
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optimal budget trades off between accommodating increasingly unprofitable projects

and the communication spillover benefits they bestow.

I conclude the paper with two extensions. First, I allow the agents’ rate of time

discounting to be higher than the principal’s, capturing the idea that agents may

be more short-sighted than the principal. Accommodating this is straightforward

given a main strategic tension in the game is that agents already discount the future

more than the principal owing to fears of preemption. For a fixed budget, the more

agents discount the future the more the equilibrium threshold falls, which is shown

to decrease the principal’s payoff; however, the principal can partially offset this by

reoptimizing the budget size. I next consider an extension in which projects are

perfectly divisible so that the principal need not make an all-or-nothing decision as

respects each agent’s project. However, since each agent always wishes to induce

either the most favorable or pessimistic beliefs about their project it is shown the

reporting strategies do not change and the previously identified equilibrium survives.

Literature review

The current paper is one of a handful of ‘competitive cheap talk’ models found in

the literature. Li, Rantakari, & Yang (2016) coined that term in their one-period

model in which two agents with additive and/or multiplicative bias compete for the

funding of a single project. Li (2016) extends this model to a dynamic setting where

the principal consults a single agent in each period and must alternate between two

agents over time with some known probability. However, the current paper most

closely relates to the modeling framework of Schmidbauer (2017) in which agents

compete via cheap talk for the adoption of a single project in a multi-period setting.

In that paper a symmetric equilibrium involves each agent recommending acceptance

of his own project only if it exceeds a stationary threshold value. The present paper

shares many features but differs crucially in allowing the principal to select a budget
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in advance. This leads to a non-stationary equilibrium threshold and allows for a

new comparative static that illuminates how competition between agents affects the

principal’s optimal budget size. The current paper also considers extensions allowing

for divisible projects and differing time discount factors between the principal and

agents.

This paper also relates to the project selection literature more generally. Bonatti

& Rantakari (2016), Friebel & Raith (2010) and Rantakari (2016) develop models

that allow for the exertion of costly effort to probabilistically increase the value of

the project to the principal. Rantakari (2014) allows the principal to ex-ante publicly

commit to a decision mechanism when agents have an unknown bias. In Moldovanu

& Shi (2013) new projects arrive each period until a committee unanimously agrees

to adopt one. Finally, Armstrong & Vickers (2010) consider a model of delegated

project selection in which the principal is not aware of all the projects available to

the agent. Although these papers differ in their approaches each assumes there is an

exogenous budget of one project to be adopted.

Finally, the present paper relates to the capital budgeting literatures in accounting

and finance (Harris & Raviv 1996, 1998, 2005; Stein 1997). In most such models a

single agent has private information about the optimal scale of a project and prefers a

larger size than the principal. When the principal has commitment power, it has been

shown the optimal mechanism may include capital rationing or the use of a higher

hurdle rate than the principal’s cost of funds (Antle & Eppen 1985, Berkovitch &

Israel 2004, Marino & Matsusaka 2005). Although these papers address some of the

same questions as the present one, the modeling approaches are quite different. First,

in my model agents with their own private information compete for a share of the

budget, a feature that is absent in much of the above literature.2 Second, I assume

2One exception is Harris et al. (1982) in which competing managers must pay for a common
resource pursuant to their reported transfer prices and a mechanism selected by the principal. An-
other is Brown et al. (1992) in which a particular mechanism used by some U.S. government agencies
is considered.

5



the agents’ reports are cheap talk and the principal cannot commit (other than to a

budget).

2 Model

A principal determines the number of projects that will be funded k ∈ {0, 1, ..., n},

which I refer to as the budget, where n is the number of agents. Let C(k) be the cost of

funding k projects, with C(0) = 0 and, abusing notation, let C ′(k) = C(k)−C(k−1)

with C ′(k) increasing in k. Thus I assume a project from any division consumes the

same amount of resources and that the cost of obtaining funds for this purpose is

increasing with each project. After announcing the budget, each agent i receives an

independent and identically distributed project of profitability θi ∼ F , where F is a

C1 function with finite expectation and full support on a closed interval A ⊆ R+, with

minA = 0, for i = 1, ..., n. The distribution F is assumed to be common knowledge

while the realization of θi is private information to agent i. In contrast to other

multiple-sender models, agent i does not observe the outcome of θj, for j ̸= i. Agents

simultaneously send cheap talk messages to the principal, who then chooses which

projects to accept subject to the budget. I initially assume the adoption decision is

binary for each project (adopt or not), but in an extension allow for divisible projects.

While the principal need not use up the entire budget immediately, I assume he

cannot adopt more than k projects after the budget has been announced. At the

end of any period if the principal has not yet adopted k projects over the course of

the game, the next period is reached with new i.i.d. draws for each θi, and continues

indefinitely until the total budget is exhausted.3 Projects are short-lived; any rejected

project is lost and cannot be brought back.4 For simplicity, I assume that if agent

3It can be shown the qualitative results of the paper remain unchanged if the game had a known
ending period. However, this would increase notational burden without any added insight.

4However, in the equilibria identified in Proposition 1 below it would never be optimal to return
to any project that was previously rejected.
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i’s project is chosen in period s then that agent is removed from consideration in all

subsequent periods. This may arise, for example, if expert i begins working on the

approved project and so is unavailable to pursue other projects in future periods.5

The principal chooses xt ∈ Xt ≡
{
(x1t, ..., xnt) : xit ∈ {0, 1} ,

∑n
i=1 xit ≤ kt

}
,

where xit = 1 if agent i’s project is adopted in period t and xit = 0 if it is not,

for i = 1, ..., n, and kt is the unused portion of the budget at period t.6 All agents are

aware of kt before making their reports in period t. Payoffs in period t are as follows.

The principal’s payoff is the sum of the adopted project’s types, Up(xt) =
∑n

i=1 xitθi.

Agents are biased in that they only receive positive utility if their own project is

adopted

Ui(xt) =

 0 if xit = 0

θi if xit = 1
,

but otherwise have aligned incentives with the principal. Future payoffs are dis-

counted by δ ∈ (0, 1) and all players are expected utility maximizers. Finally, the

principal’s payoff is additively separable in the benefits of project adoption and cost

of funding the budget, giving an overall payoff function of
∑∞

t=1 δ
t−1Up(xt)− C(k).

Let each agent’s message space be denoted by M , where M = R+. A strategy for

agent i is then a sequence of functions gi,s that for each period s maps from the his-

tory of the game into ∆M , the set of all probability distributions over M . Formally,

at period s the history of the game for agent i is k× (θi,1, ..., θi,s)× (mi,1, ...,mi,s−1)×

(x1, ..., xs−1), where mi,l is the message agent i sent in period l. A strategy for the

principal is a probability distribution over budget sizes k ∈ {0, 1, ..., n} together with a

sequence of functions hs that map from any history k×(x1, ..., xs−1)×
n∏

j=1

(mj,1, ...,mj,s)

into probability distributions over actions, ∆X. I look for a symmetric perfect

5Additionally, it will be shown that the symmetric equilibria of the model given this assumption
are in fact asymmetric equilibria of an otherwise identical model without this assumption.

6Thus the assumption made in the prior sentence can be stated formally as requiring xjs′ = 0
for all s′ > s when agent j’s project was selected in period s.
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Bayesian equilibrium.

3 Results

The principal makes a two-stage decision: how many projects will be funded and

which ones? As I will show, the answer to the former question affects the answer

to the latter, so I first focus on the communication subgame that ensues after the

budget has been selected.

Communication subgame

After setting the budget the principal takes the binary action of adopting each agent’s

current project or not. For this reason any equilibrium reporting strategy will consist

of at most two meaningful messages: one for attempting to induce acceptance and

one for rejection, which I will refer to as a recommendation to accept or reject,

respectively. To see how competition between agents affects such reporting it is

instructive to initially consider how agents report in the absence of competition. This

is achieved within the model when the largest possible budget k = n is in place since

in this case each will eventually have a project funded.7 That is, regardless of when

agent j recommends adoption agent i can make his own recommendation without

fear of being preempted. Absent competition, each agent faces a stationary optimal

stopping problem, the well-known solution to which is to adopt a project (i.e., stop

searching) only if its value exceeds a stationary threshold c∗ (DeGroot, 2005). The

basic tradeoff an agent faces is that by recommending acceptance now he forgoes

a possibly better project next period but avoids time delay costs. The threshold

type is indifferent between accepting now and the discounted expected payoff from

continuing, and thus the optimal threshold increases in the discount factor δ.

7Recall I assume an agent is removed from future consideration after one of his projects has been
adopted.
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Given agents are symmetric and report using a stationary threshold strategy, any

recommended project in any period is worth E[θ|θ > c∗] to the principal and would

be accepted immediately. In fact, with the full budget k = n each agent’s interests are

fully aligned with the principal’s and so c∗ is the same threshold that would be used

by a fully informed principal; i.e, the first-best outcome is achieved. These findings

are summarized in the remark below.

Remark 1 Conditional on the maximal budget (k = n), the first-best outcome in

the communication subgame is achieved. Each agent uses a symmetric stationary

threshold c∗ where projects are recommended for adoption only if θi > c∗, and all

recommendations are followed by the principal.

Now suppose that k = n − 1 so that all but one agent will eventually have his

project adopted, and conjecture an equilibrium in which each agent still uses the

threshold c∗ from Remark 1. By construction agent i’s threshold type θi = c∗ was

indifferent to acceptance or rejection when k = n, though I claim when k = n− 1 it

strictly prefers acceptance. This is because given the conjectured strategies all n− 1

other agents’ projects exceed the threshold and are adopted in the current period with

probability (1 − F (c∗))n−1 > 0, thus giving no continuation value to agent i. Type

c∗ must then strictly prefer adoption, implying the equilibrium threshold must fall.

Thus when agents compete for the adoption of their projects each discounts the future

more since there is a chance future periods will not be reached. In the proposition

below I solidify the intuitions developed so far, namely that an equilibrium strategy

for the agents employs of a symmetric reporting threshold, and that as the size of the

budget declines so too does this threshold.

Recall kt is the size of the remaining budget at period t. I drop the subscript

when the period need not be specified.
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Proposition 1 A symmetric equilibrium of the communication subgame exists. In

any such equilibrium agents use a threshold c∗(δ, k), increasing in δ and k, such that

projects θ ≤ c∗ are rejected while θ > c∗ are recommended for acceptance. If k or

fewer projects are recommended then each recommended project is accepted; otherwise

the principal chooses k of the recommended projects to adopt with equal probability.

Proof See the appendix.

The proposition tells us that a symmetric equilibrium of the communication sub-

game always exists.8,9 In any such equilibrium with c∗ > 0 each agent’s threshold

type is indifferent to recommending acceptance or rejection of his own project. When

recommending rejection an agent hopes to receive a better project in the future but

faces both a time delay cost and runs the risk of being preempted by other agents.

Preemption can occur since with some known probability enough other agents will

have recommended acceptance in the current period, thus exhausting the budget and

ending the game. All else equal, this probability decreases in the equilibrium thresh-

old used by each agent, which itself depends on the remaining number of projects left

in the budget, k. Specifically, the proposition states that as the remaining budget

k decreases so too does the reporting threshold c∗, a result that can be interpreted

in terms of competition between agents. Using the ratio of the number of agents to

8However, this equilibrium may be trivial in that no information is conveyed by the agents.
Indeed one can easily verify that c∗ = 0, in which all projects are recommended irrespective of type,
is always an equilibrium. Conditions ensuring the existence of an equilibrium threshold c∗ > 0 are
discussed in the appendix, where it is also shown that multiple non-trivial equilibrium thresholds
may exist. The question of equilibrium selection is addressed after Lemma 1 below.

9Asymmetric equilibria of the subgame also exist. For example, given n and k it can be shown
that for any symmetric equilibrium there is a corresponding asymmetric equilibrium in which m ∈
{1, ..., n− k} agents babble and are ignored while the principal and remaining n−m agents act as
they do in a symmetric equilibrium of a game with n−m total agents and budget k. Similar logic
explains the claim made in footnote 5 that the symmetric equilibria identified in Proposition 1 are
asymmetric equilibria of an otherwise identical model in which agents may remain in the game for
all subsequent periods after having their project selected.
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projects remaining as a measure of competition,

Agents remaining

Budget remaining
=

n−
(
k − k

)
k

, (1)

it can be seen that for k < n competition increases as the budget is spent (i.e., as k

decreases). That is, as more projects are adopted the remaining agents are chasing

after relatively fewer opportunities for funding. This implies it is increasingly likely

that one’s own project will not be selected by the principal, and the probability of

continuing in the game is lower, thus inducing each agent to use a lower threshold.

In order to interpret this result in terms of the principal’s payoff, I establish the next

lemma.

Lemma 1 The principal’s payoff in the subgame is single-peaked at his first-best

project adoption threshold ĉ(δ, k), which increases in δ and decreases in k. In ad-

dition, any equilibrium threshold c∗(δ, k) < ĉ(δ, k) when k < n while they are equal

when k = n.

Proof In the first-best the principal directly observes each project’s value and so he

faces an optimal stopping problem. It is well known the solution entails a threshold

ĉ at which the principal is indifferent to continuing, and: (i) increases in the discount

factor δ, and (ii) at which the principal’s payoff is single-peaked (DeGroot, 2005).

The comparative static on k follows from the fact that the distribution of the kth

highest project first order stochastically dominates the distribution of the (k + 1)th

highest.

When instead the principal must rely on the agents’ reports, he adopts a project or

not based on posterior beliefs that are consistent with the agents’ reporting strategies.

These agents likewise face an optimal stopping problem given discount factor δ but

additionally discount the future since there is some probability the game terminates

and some agents receive payoff 0. Thus c∗ < ĉ when k < n by (i) above since adding
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a probability of termination to a game is equivalent to lowering δ. Finally, ĉ = c∗

when k = n by Remark 1.

One implication of the lemma is that if multiple equilibrium thresholds exist, the

highest is preferred by the principal and in fact is Pareto dominant. The former claim

follows since the highest equilibrium threshold is closest to the first best threshold

at which the principal’s payoff is single peaked. Pareto dominance follows because

in a symmetric equilibrium with n ex-ante identical agents each agent has the same

probability of having his project selected and so receives 1
n
of the principal’s payoff.

For this reason if there are multiple equilibrium thresholds in the subgame I select

the largest one.

The full game with budget selection

In order to determine the principal’s optimal choice of budget and explore its proper-

ties, the costs and benefits from k must be understood. In the proposition below I use

Lemma 1 one more time to see how competition between agents affects the benefit

derived from k.

Proposition 2 A larger budget (higher k) improves communication and benefits all

players.

Proof By Lemma 1 and the arguments after its proof, it suffices to track the prin-

cipal’s payoff. The direct effect is clearly positive as the principal enjoys payoffs

from more projects. I now argue the indirect communication effect is also positive.

Consider an initial budget k that is increased to k + 1 ≤ n. Then

c∗(δ, k) < c∗(δ, k + 1) ≤ ĉ(δ, k + 1) < ĉ(δ, k),

where the first inequality follows from Proposition 1 and the other two follow from

Lemma 1. Further, this chain of inequalities holds for all k and n and thus it holds in
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every period for each possible history of the game. The claim then follows since the

principal’s payoff is single-peaked at ĉ(δ, k) while the equilibrium threshold increases

from c∗(δ, k) to c∗(δ, k + 1) and thus gets closer to this peak.

Since higher k decreases the measure of competition found in line (1), it can be

seen that decreased competition between agents increases the principal’s payoff. This

follows because when more projects will be funded each agent is less likely to be

preempted by the others, so that a recommendation to reject one’s own project is

less likely to result in termination of the game. This leads to improved communica-

tion in the form of a higher equilibrium threshold, which by Lemma 1 increases the

principal’s payoff. Ultimately the principal trades off this benefit with the cost of

expanding the budget to determine its optimal value k∗, the determination of which

is straightforward since there are only finitely many possible budgets k ∈ {0, 1, ..., n}.

The proposition has two implications for the principal in the budget-setting stage

of the game. First, since a marginal expansion of the budget not only provides pay-

offs from an additional project but also raises the expected payoff from the previously

budgeted projects, if the principal naively ignores the communication effect a subop-

timally low k will be selected. A second and related implication of Proposition 2 is

also available. Since there is an increasing marginal cost of expanding the budget and

by Proposition 1 each adopted project has the same expected value to the principal,

one can think of the projects as being ordered from high to low net profitability, with

the lowest net profitable project adopted “last”. Then the principal may adopt a

larger budget even if the marginal project is itself unprofitable provided the indirect

communication effect identified in Proposition 2 is strong enough.

Remark 2 The principal chooses a budget he knows will lead to the adoption of some

unprofitable projects in order to induce more information revelation from the agents.

One final observation is in order. While Remark 2 posits the principal expands the

budget to include unprofitable projects, it is not immediate that the budget size under
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second-best exceeds that under first-best since a different adoption threshold is used

in each case. That is, because the principal receives lower quality information when

agents strategically communicate the projects adopted in this case are on average

less profitable than under first-best, and this tends to make the second-best budget

lower than first-best. However, militating against this is Remark 2’s observation

that the principal is willing to take on marginal projects that are unprofitable under

second-best. Thus while a general comparison of budgets is not available, it can be

shown it is possible the second-best budget exceeds the first-best.10 In such cases a

bloated budget can be viewed as a strategic response by the principal to the agency

problem rather than a manifestation of the agents’ ability to appropriate resources

for themselves.

An example

Here I present an explicit example. Suppose there are n = 5 agents with i.i.d. projects

θi ∼ B
(
1
5
, 1
5

)
having a Beta distribution. Let δ = 0.7 and the cost function be

C(k) = 0.3k+0.1k2. Table 1 shows how the equilibrium threshold c∗k, the expectation

conditional on this threshold E [θ|θ > c∗k], and the principal’s expected payoff in the

subgame Πp change with the budget k. In addition, it reports the marginal benefit

and cost from expanding the budget.

Various useful observations can be gleaned from the table. For example, when

k = 1 competition between agents is so fierce that the reporting threshold is c∗ = 0

(i.e., all agents always recommend adoption). In this case the principal learns nothing

10Denote the first- and second-best budgets as k̂ and k∗, respectively and define B′
FB(k) and

B′
SB(k) as the marginal benefit from the kth project under first and second-best, respectively. Now

suppose the full budget k∗ = n is optimal, which in particular implies B′
SB(n) ≥ C ′(n) . Since

B′
FB(n) < B′

SB(n) it is possible that B′
SB(n) > C ′(n) > B′

FB(n) and thus k̂ < n. To see why
B′

SB(n) > B′
FB(n), note that when k = n the total payoff under second-best equals that under first-

best (Remark 1). However, for k = n− 1 (and indeed any k < n) the total payoff under second-best

is less than that under first-best by Lemma 1. The statement then follows. Given this, k∗ > k̂ so
that the budget is larger under second-best.
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Budget k Equilibrium

Threshold c∗k

E [θ|θ > c∗k] Πp Marginal

Benefit

Marginal

Cost

1 0 0.5 0.5 0.5 0.4

2 0.004 0.605 1.208 0.708 0.6

3 0.086 0.735 2.139 0.931 0.8

4 0.299 0.840 2.966 0.826 1.0

5 0.484 0.895 3.457 0.492 1.2

Table 1: The budget k, threshold c∗k, conditional expectation given this threshold,
principal’s discounted expected payoff in the subgame, and the marginal benefit and
cost of adopting an additional project for the current example.

from the reports and uses his prior, so any agent’s project is worth E [θ] = 0.5, which is

profitable to fund since the marginal cost of the first project is 0.4. The marginal cost

of the second project is 0.6, though, so it might appear that the principal would choose

to fund only one project. However, when k = 2 agents will use a higher threshold,

which a calculation shows is approximately 0.004. A typical accepted project then

yields the principal E [θ|θ > 0.004] ≈ 0.605 and results in a total discounted expected

payoff of 1.208. The marginal benefit from expanding the budget is thus 1.208 −

0.5 = 0.708 > 0.6, providing a net increase in payoffs. Likewise, calculations show

including a third project in the budget is profitable even though its marginal cost

is 0.8. Thus for low values of k there is a virtuous cycle, in which the funding of

one extra project causes all agents to use a more favorable threshold, increasing the

profits to the principal from adopting them, thus causing yet another project to be

profitably funded. However, owing to increasing marginal costs it can be seen that a

fourth project would not provide a net benefit and so the optimal budget is k∗ = 3.

Given Proposition 2, the marginal benefit from an expanded budget can be de-

composed into a direct effect representing the discounted expected value of an addi-

tional project and an indirect communication effect from a higher reporting threshold

used for all projects. This decomposition is illustrated in Figure 1. The green dot-
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Figure 1: The marginal benefit (MB) from the direct effect, the total marginal benefit
from the combined direct and indirect effect, and the marginal cost (MC) of expanding
the budget in the example under consideration.

ted line shows the direct effect of funding one more project, which is calculated as

Πp(c∗k′ , k
′ + 1) − Πp(c∗k′ , k

′), where Πp(c, k) is the principal’s expected payoff with

threshold c and budget k. That is, to find the direct effect one asks what the ex-

pected benefit from a larger budget would be if the threshold remains fixed. As the

figure shows, this effect can decrease in k since for fixed n and a budget that is already

large, the waiting time for another success will be longer so that its present value is

smaller.

The blue dashed line in Figure 1 plots the total marginal benefit from an expanded

budget, whose values are simply taken from Table 1. The residual between the gold

and blue lines is then the indirect communication effect. For any budget k < n

Lemma 1 states c∗k is too low for the principal and so the increase in the threshold

induced by a larger budget always improves the principal’s payoff (see Proposition

2). The indirect effect is calculated as Πp(c∗k′+1, k
′ + 1) − Πp(c∗k′ , k

′ + 1), and in the

example it initially increases with k since there are more projects that benefit from a

higher threshold while it eventually declines in k as the gains from getting closer to
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the optimal threshold are smaller.

Another salient feature of the example is that while the optimal budget size is

k∗ = 3, the third project is itself unprofitable. This follows since its direct effect of

0.599 added to its share of the indirect effect, 0.332
3

, is approximately 0.710, which is

less than its marginal cost 0.8. That is, the discounted expected value of the third

project (which uses threshold c∗3) is 0.710 < 0.8, and thus this project is unprofitable.

However, when the remaining portion of the indirect effect, 2×0.332
3

, is included the

total marginal benefit 2×0.332
3

+ 0.710 ≈ 0.931 > 0.8. Consistent with Remark 2, the

principal finds it optimal to adopt a budget that includes an unprofitable project.

Lastly, the present example also demonstrates that a general comparison of k∗ and

k̂, the equilibrium and principal’s preferred threshold, respectively, is not possible.

As argued in footnote 10, the marginal benefit of adopting the maximal budget is

always greater under second-best than first. Then if B′
FB(k = n) < C ′(k = n) <

B′
SB(k = n) the full budget is optimal under second best but not first best. However,

as the present example shows, the marginal benefit from the very first project could

be as low as E[θ], which is always less than the first-best payoff when k = 1. If

E[θ] < C ′(k = 1) < B′
FB(k = 1), then k∗ = 0 and k̂ > 0 is possible.

4 Extensions

Differing discount factors

I now consider the possibility that the agents and principal have different time-

discounting rates. For example, the principal may be long-lived while each agent

may exit the game each period with some exogenous probability due to outside job

opportunities. For this reason I will consider discount factors δa for the agents and

δp for the principal such that δa ≤ δp. Accommodating this extension will prove

straightforward given that a main strategic tension in the game is that agents already
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discount the future more than the principal due to fear of preemption.

Proposition 3 δp has no effect on the equilibrium threshold c∗. In contrast, lower

δa decreases c∗ and results in a lower payoff for the principal.

Proof The threshold c∗ does not depend on δp since its value was determined by

the sender constraints (and therefore δa), as seen in lines (2) and (5) in the proof of

Proposition 1. Further, the principal will still follow the agents’ recommendations

since δa ≤ δp. Next, denoting the expression in line (5) as D(n, k, c, δa), by inspection

∂D
∂δa

> 0. Also, Claim 2 in the proof of Proposition 1 establishes limc→∞ D = 0, which

implies the highest equilibrium threshold c∗ must satisfy ∂D
∂c
(c∗) ≤ 1. Applying the

implicit function theorem, these two facts imply ∂c∗

∂δa
> 0. Finally, since c∗ increases

in δa and δa ≤ δp, Lemma 1 implies the principal’s payoff in the subgame increases in

δa, and thus also increases in the full game when k is reoptimized.

While δp affects the principal’s preferred threshold it does not affect the equilib-

rium threhold, which is determined by competitive considerations between the agents

and their own discount factor. As the agents become less patient they use a lower

threshold, which harms the principal since any equilibrium threshold is already too

low from his perspective (Lemma 1). The principal’s reoptimized budget will also

therefore result in a lower payoff, though how k∗ changes in δa is ambiguous in gen-

eral.

Divisibility of projects

I have assumed that projects are indivisible. In some situations this is reasonable,

as for example in the academic job market example given in the introduction, while

in other settings it may be more natural to assume projects can be divided. In this

subsection I explore what effect the divisibility of projects has on the results when

the budget is still restricted to be an integer.
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Suppose projects are infinitely divisible, so that any fraction xi ∈ [0, 1] of agent i’s

project can be accepted by the principal. The message space for each agent remains

unchanged at M = R+, while the principal’s choice is the vector x = (x1, ..., xn) such

that
∑n

j=1 xj ≤ kt in period t. In the stage game, agent i of type θi receives payoff

xiθi if xi of his project is adopted and 0 otherwise, while the principal’s payoff in

a period is
∑n

j=1 xjθj and remains additively separable with respect to C(k). The

next proposition shows that due to agents’ reporting incentives allowing for divisible

projects does not affect the previous equilibrium characterization.

Proposition 4 When the principal can adopt fractions of projects the equilibrium

found in Proposition 1 still exists and its properties remain unchanged.

Proof Agent i would never send a message inducing partial adoption of his project

since his payoff increases in xi. Instead, he would either prefer full adoption of his

project, or possibly rejection if there is a high enough chance of reaching the next

period. Thus the agents will employ a threshold strategy with only two meaning-

ful messages: “accept” or “reject”. But then the equilibrium characterization and

existence proofs, and therefore all subsequent propositions, follow as before. In par-

ticular, the principal is indifferent between any recommended projects, and so is

willing to adopt all of (xi = 1) each recommended project if k̄ or fewer projects are

recommended; and if more than k̄ are recommended he is willing to adopt the entire

portion of k̄ projects selected randomly with a uniform distribution.

5 Conclusion

The questions of how many and which projects to fund within an organization are

of primary concern to decision makers. In this paper I explore these questions in

the context of an uninformed budget-setting principal relying on cheap talk reports

from biased agents to make project adoption decisions. In the first-stage the principal
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selects the number of projects that will be funded and in the second stage each agent

reports on his own project’s quality which is privately observed. At the end of any

period if the global budget has not been exhausted the agents get new independently

drawn projects and again make reports to the principal.

I find that when agents compete for the funding of their own favored projects in

this manner the quality of information degrades, lowering all players’ payoffs. This

follows since competing agents know there is some chance the game will not continue

because the budget will have been exhausted, causing them to discount the future

more than the principal. Therefore the effect of a marginally larger budget is two-

fold: it provides payoffs from another project but also lessens competition between

the agents and thereby improves the quality of information and payoffs from all other

funded projects. For this reason the principal is willing to fund some projects he

expects to be ex-post unprofitable in order to elicit more information on all projects.

While these results have assumed that adopting a project is a binary yes/no decision,

in an extension I show this is without loss of generality since agents will not provide

messages more informative than “accept” or “reject.” Finally, I show that when agents

have a higher rate of time-discounting (lower discount factor) than the principal

communication problems are exacerbated and therefore reduce the principal’s payoff.

6 Appendix – proof of Proposition 1

The proof consists of two parts. I first verify the equilibrium characterization of the

proposition is correct by showing that any symmetric equilibrium entails the use of

a threshold strategy, and that the principal’s conjectured strategy is therefore a best

response. Next, I give conditions such that a non-trivial equilibrium threshold exists.
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Equilibrium characterization

To see that a threshold strategy must be used by the agents, note that for any strategy

the continuation value from inducing rejection is invariant to type while the expected

payoff from inducing acceptance is increasing in type. Thus any message will be sent

by a connected set of types. Next, there cannot be more than one message that

induces adoption since the message that induces a lower posterior would never be

sent. Thus agents’ strategy must use a threshold c∗.

I now show the principal is best responding by rejecting all projects recommended

for rejection and adopting all those recommended (subject to the budget). If a single

agent prefers his project be rejected then the principal does a fortiori since the latter

benefits when any agent’s future project is above c∗. Thus a recommendation to

reject will be followed. Finally, it will be proved below that the agents’ threshold

weakly decreases over time, from which it follows that immediate acceptance of a

recommended project is a best response.

Equilibrium existence

I proceed iteratively by showing that existence when k = 1 implies existence for k = 2,

which in turn implies existence for k = 3, and so on. First, I define several terms.

Let Mj,q (c) ≡
(
q
j

)
F (c)q−j (1− F (c))j be the probability that exactly j of q agents

recommend acceptance given threshold c. Let Aj,q (c) be the probability an agent’s

recommended project is selected when q other agents use threshold c and there are j

projects left to be selected by the principal; thus Aj,q (c) ≡
q∑

i=0

Mi,q

(
j

max{j,1+i}

)
. Let

Πj,n be an agent’s ex-ante equilibrium payoff in a game with j projects to be selected

and n agents. A calculation shows Π1,n = 1−F (c)n

1−δF (c)n
E[θ|θ > c] (see Lemma 3, p.247 of

Schmidbauer, 2017), and clearly Π0,n = 0; define Π−s,n = 0 for any s > 0.
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The k = 1 case

It is shown in Schmidbauer (2017) (see Lemma 2 and Proposition 2, p.245) that

existence of an equilibrium for the k = 1 case reduces to finding a fixed point of

G(c) ≡ δF (c)n−1

1−δF (c)n

∫∞
c

θdF (θ), and that at least one non-zero fixed point exists if n =

2 and E[θ] = 1/δ f(0), and otherwise at least two non-zero fixed points exist if

there is a c such that G(c) > c.11 For k ≥ 1 it will be shown the equilibrium

threshold in period t depends only on the remaining number of projects to be funded,

kt. Since the project generation process is stationary, I reduce notation and denote

an equilibrium threshold when there are k remaining projects to be funded as ck.

Candidate thresholds are denoted simply by c.

The k = 2 case

The indifference condition for the threshold type is

c A2,n−1(c) = δ

(
M1,n−1(c)Π1,n−1 +M0,n−1(c)

(∫ ∞

c

θdF (θ)A2,n−1(c) + F (c)c A2,n−1(c)

))

c (1− δF (c)n) = δ

(
M1,n−1(c)Π1,n−1

A2,n−1(c)
+ F (c)n−1

∫ ∞

c

θdF (θ)

)

c =
δM1,n−1 (c)

1− δF (c)n
Π1,n−1

A2,n−1 (c)
+G (c) . (2)

In the first line the payoff from recommending acceptance (left side) is equated to the

value from recommending rejection (right side). Rejection gives Π1,n−1 if exactly one

other agent recommended acceptance; if none did then integrate over types above c

while types below c get payoff c A2,n−1 (c); otherwise the payoff is zero. In the second

line I substitute M0,n−1(c) = F (c)n−1, divide each side by A2,n−1(c), and subtract off

the rightmost term on the right hand side of the first line. The last line divides by

11Recall if there are multiple equilibrium thresholds I select the highest, which is Pareto dominant.
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1− δF (c)n and substitutes for G(c).

I claim the existence of c1 > 0 that solves the k = 1 case (i.e., G (c1) = c1) implies

the existence of a c2 > c1 that solves line (2). First,
δM1,n−1(c)

1−δF (c)n
Π1,n−1

A2,n−1(c)
> 0 for all c > 0

and so c1 is not a solution of line (2), and by inspection this term is continuous in c.

I now claim that this term converges to 0 as c → ∞. Recalling Π1,n−1 is a constant

with respect to c (the conjectured threshold for the k = 2 case), δ < 1 implies

lim
c→∞

δM1,n−1 (c)

1− δF (c)n
Π1,n−1

A2,n−1 (c)

= lim
c→∞

δ
(
n−1
1

)
F (c)n−2 (1− F (c))

1− δF (c)n
Π1,n−1

A2,n−1 (c)
(3)

=
0

1− δ
Π1,n−1 = 0

since F (c)i → 1 for all i, 1 − F (c) → 0, and A2,n−1 (c) → 1. Next, limc→∞ G(c) =

limc→∞
δF (c)n−1

1−δF (c)n

∫∞
c

θdF (θ) = δ
1−δ

× 0 = 0 and thus the left hand side of line (2) must

exceed the right hand side for sufficiently high c. Thus there exists a fixed point

c2 > c1.

Given c2 exists Π2,n can be calculated. With probability M0,n (c2) all projects are

rejected and the identical situation is faced next period; with probability M1,n (c2)

precisely one project is adopted and so the game reduces to k = 1 with n− 1 agents;

and with the remaining probability at least two projects are adopted and the game

ceases. Thus

Π2,n = 2E [θ|θ > c2] (1−M0,n (c2)−M1,n (c2)) + (E [θ|θ > c2] + δΠ1,n−1)M1,n (c2) + F (c2)
nδΠ2,n

Π2,n =
2E [θ|θ > c2] (1−M0,n (c2)−M1,n (c2)) + (E [θ|θ > c2] + δΠ1,n−1)M1,n (c2)

1− δF (c2)n
.

Thus with Π1,n−1 one can calculate Π2,n, and it can be seen more generally that Πj,n′
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can be constructed from Πj−1,n′−1. This fact is pertinent since, as in line (3) in the

construction of c2, knowing Πj−1,n is required to find cj.

Induction on k

Having solved the k = 1 and k = 2 cases I now proceed by induction. By the induction

hypothesis suppose there is a ci which is a fixed point of

G (c) +
i−1∑
j=1

δMi−j,n−1 (c)

1− δF (c)n
Πj,n−i+j

Ai,n−1 (c)
. (4)

To establish the k = i+ 1 case I must show there exists a fixed point of

G (c) +
i−1∑
j=0

δMi−j,n−1 (c)

1− δF (c)n
Πj+1,n−i+j

Ai+1,n−1 (c)
, (5)

which follows from the two claims below.

Claim 1 Line (5) is greater than line (4) since the j = 0 term of line (5) is positive

for t > 0 and each term j > 0 in the sum in line (5) exceeds its counterpart in line

(4); i.e.,
δMi−j,n−1 (c)

1− δF (c)n
Πj+1,n−i+j

Ai+1,n−1 (c)
≥ δMi−j,n−1 (c)

1− δF (c)n
Πj,n−i+j

Ai,n−1 (c)
(6)

for all j ∈ {1, 2, ..., i− 1}.

Claim 2 G(c) and each of the terms j ∈ {0, 1, ..., i− 1} in the sum in line (5) ap-

proach 0 as c → ∞.

These claims together with the continuity of the expression in line (5) then imply

there exists a ci+1 > ci that solves line (5), and one can calculate the value of Πi+1,n

for all n. Then, since it can be seen than G(0) = 0 for any k, a symmetric equilibrium

always exists. Further, this equilibrium involves a non-zero threshold for any k when

c1 > 0 exists.
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Proof of Claim 1 First, limc→∞G(c) = limc→∞
δF (c)n−1

1−δF (c)n

∫∞
c

θdF (θ) = δ
1−δ

× 0 = 0.

By inspection the j = 0 term of line (5) is positive for c > 0. Next, to establish line

(6) holds for j ∈ {1, 2, ..., i− 1}, I show

Ai+1,n−1(c)

Ai,n−1(c)
<

j + 1

j
<

Πj+1,n−i+j

Πj,n−i+j

. (7)

For the first inequality in line (7) it suffices to show the j = i− 1 case:

Ai+1,n−1(c)

Ai,n−1(c)
<

i

i− 1
⇐⇒ Ai+1,n−1(c) <

i

i− 1
Ai,n−1(c) ⇐⇒

n−1∑
l=0

(
n− 1

l

)
F (c)n−1−l(1− F (c))l

(
i+ 1

max{i+ 1, l + 1}

)

<
n−1∑
l=0

(
n− 1

l

)
F (c)n−1−l(1− F (c))l

(
i
(

i
i−1

)
max{i, l + 1}

)
,

which follows since i
(

i
i−1

)
> i+ 1 ⇐⇒ i2 > i2 − 1.

I now establish the second inequality in line (7). For any symmetric threshold

each agent has the same ex-ante probability k
n
of having his project selected, and

thus comparing any game with j + 1 projects to be selected to any game with j,

each agent is j+1
n
� j

n
= j+1

j
times more likely to have his project selected in the

former than the latter. Additionally, the ex-ante expectation of an accepted project

is greater in the former case than the latter since the adoption threshold is higher,

which itself is known to be true for k ≤ i by the induction hypothesis. Thus the

inequality j+1
j

<
Πj+1,n−i+j

Πj,n−i+j
holds for all n. QED Claim 1.

Proof of Claim 2 Substituting for Mi−j,n−1, a generic term of the sum in line (5) is

(
δ
(
n−1
i−j

)
F (c)n−1−i+j (1− F (c))i−j

1− δF (c)n

)
Πj+1,n−i+j

Ai+1,n−1 (c)
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and the term in large parentheses converges to 0
1−δ

and thus the entire expression

converges to 0. QED Claim 2.
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