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Abstract

Each of n experts communicates with a principal about the privately observed qual-

ity of the expert’s own project via cheap talk, with new independently drawn projects

available each period until the principal adopts one. Even when experts are highly

biased in that they only receive a positive payoff if their own project is selected, we

show that informative equilibria may exist, characterize a large class of stationary equi-

libria, and find the Pareto dominant symmetric equilibrium. Experts face a tradeoff

between inducing acceptance now versus waiting for a better project should the game

continue. When the future is more highly valued experts send more informative mes-

sages, increasing the average quality of an adopted project and resulting in a Pareto

improvement, while communication is harmed and payoffs can decline when there is

more competition between experts.
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1 Introduction

A decision maker often consults many experts over time before taking an action. For example,

consider the division managers of a company who report to the CEO about the profitability

of projects available to them. The CEO has enough resources to fund some, but not all,

projects and cannot directly observe their quality, while each division’s manager is privately

informed about his own best project. The CEO seeks to select only the best projects, whereas

each manager is only concerned with his own division’s profits and so statically wants his

project adopted even if it has low profitability. However, better projects may arrive over

time, which will influence the desirability of adopting projects currently available.

In this paper we ask whether the decision maker (the CEO) in such a setting can benefit

from the unverifiable reports of highly biased experts (each division manager) when mak-

ing an adoption decision, where the projects are independent across experts and time. The

defining characteristics of this motivating example are as follows. Each of n experts simul-

taneously report their project’s type using cheap talk to a decision maker (DM). The DM

then either adopts one of the projects, terminating the game, or chooses against adopting

any of them, in which case the players proceed to the next period where past projects are

lost but new independent draws are available. In each period an expert observes only his

own type, not that of the other experts, and receives a payoff equal to his project’s type if it

is adopted, but obtains no benefit when a competing expert’s project is adopted. The DM’s

payoff equals the adopted project’s type. Thus each expert competes with the others for the

adoption of his project over an indefinite time horizon.

Examples of experts competing in this manner can be found in many settings. Consider

lobbyists who seek to convince the chairman of a government budget committee to spend

on their own favored programs. One lobbyist proposes an educational intervention while the

other an environmental one, and each is informed of his own policy’s effectiveness but not

that of the other. The chairman only has resources sufficient to fund one policy but may

also adopt neither, deferring the decision to next year when additional proposals will be

available. Another example is given in Li, Rantakari and Yang (2016) in which an economics
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department has one open position to be filled by either a micro- or macroeconomist. The

search committees can determine the quality of the candidate in their own field but not the

other, and each prefers a hire in its own field. The department chair is a labor economist

who prefers to hire the best candidate irrespective of the field but cannot observe either

candidate’s quality. In our setting the chair may also refrain from hiring anyone now and

wait for next year’s applicant pool.

This paper explores how the existence of future periods and competition between experts

affects communication in the current period, and we show the two are intimately related.

For example, it can easily be seen that when experts vie for their project to be adopted in

a one-period model only a babbling equilibrium will exist: each expert wants his project

adopted regardless of the state and has only this period to convince the DM to do so. One

way to avoid this outcome is to change the experts’ utility functions and in fact Li, Rantakari

and Yang (2016) show that in a static model with two experts informative equilibria exist

if the experts have a low enough Crawford and Sobel (1982) style additive or multiplicative

bias. When the stage game is repeated with new projects realized each period it is no longer

clear that babbling must ensue in our model since each expert has a continuation value

and so might not attempt to induce acceptance of low types. However, future periods are

valued only if they are reached and so more competing experts tend to make informative

communication harder to support.

In order to disentangle the effects of future periods from competition between experts on

the current period’s outcomes, we first consider a game between a single expert and a DM

where incentives are aligned except for an outside option that provides a benefit to the DM

but not the expert. This setting closely resembles Che, Dessein and Kartik’s (2013) static

model in which the expert observes the value of finitely many projects and recommends one

by use of comparative cheap talk. Our expert’s recommendation can similarly be viewed

as a comparison between the value of the single project currently available with the value

of projects that might be realized in the future, the crucial difference being that in our

model the realization of future projects is not yet known to the expert. We show that even
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when an informative equilibrium does not exist in a one-period model, the addition of future

periods can allow for meaningful first-period communication because both the expert and

DM benefit from rejecting states below a threshold value since better outcomes are likely

next period. When the future is discounted less, the continuation value from the game

increases, expanding the parameter values over which informative communication can occur.

The intuition that having future periods improves communication in that only higher

quality projects are recommended remains when there are two or more experts but now an

additional factor is at play. Each expert is concerned that if he divulges information leading

to rejection of his own project a competitor’s project may be selected now and the game will

terminate. For this reason competing experts put more weight on getting a project approved

now than waiting for a better choice, and thus they recommend adoption more often. In

turn, the DM infers a lower average quality for recommended projects and so rejects for

a larger range of his outside option, making an informative equilibrium harder to sustain.

Nonetheless, the basic structure of the equilibrium remains unchanged under competition:

a threshold exists below which an expert prefers to induce rejection because continuation of

the game has greater value. Loosely speaking, an equilibrium exists when projects have a

high chance of low outcomes so that an expert does not fear being preempted by competitors,

and yet a high expected value so that arriving at the next period is enticing enough. For

states above the threshold, each expert prefers immediate acceptance and therefore wishes

to induce as high a posterior as possible in order to be selected over competing experts. This

implies credible distinctions between states above the threshold cannot be made and thus

these states must be pooled.

Having shown that equilibria will entail the use of a threshold we establish that any

equilibrium in which each expert’s message is not ignored is symmetric. However, this

symmetric threshold is too low in that there is a higher threshold that would constitute a

Pareto improvement. We use this result to select a symmetric equilibrium and interpret

comparative statics on the intensity of competition and value of future periods. We show

that as the future is discounted less each expert’s equilibrium threshold increases, which
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allows for informative communication for a larger range of parameter values and implies a

conditionally higher project quality, improving payoffs for all. Increasing the intensity of

competition has the opposite effect of lowering the equilibrium threshold and thus harming

communication, which tends to lower the DM’s payoff by causing a lower quality project

to be adopted. However, consulting an additional expert has the offsetting effect of more

quickly generating a successful project since it is more likely that at least one expert’s project

exceeds the threshold. We establish when the former communication effect dominates the

latter time effect, in which case the DM prefers to consult a single expert, and identify

asymmetric equilibria in which this can occur.

That consulting a single expert may be best for the DM contrasts with much of the

multiple-sender literature (e.g., Battaglini, 2002) and owes to the experts’ knowledge of just

one dimension of the state. One other such exception is found in Li (2016), where a tradeoff

between time and project quality is also present. In Li’s model two experts compete over

time to have their own project implemented, though unlike in the present paper they do

internalize some benefit if the other’s project is selected. Only one expert receives a project

and makes a recommendation in each period, and the DM commits to consulting the same

expert he consulted last period with probability p. In addition, an expert only receives a

draw from the distribution with some probability, which is increasing in the expert’s search

effort. Li finds that when search is free only one expert should be consulted, but otherwise

some competition (p < 1) between the experts over time may be best by inducing greater

search effort and therefore a lower waiting time for a success. Our results are complementary

to Li’s in that we find the same basic tradeoff in a setting with experts competing both across

time and within each period, and where the DM lacks commitment power.

This paper builds on a growing project selection literature. Bonatti and Rantakari (2016)

allow agents to exert costly effort that affects project completion time when each expert can

veto the adoption of the other’s project. Rantakari (2016) explores the consequences of

allowing the principal himself to exert effort in order to probabilistically obtain a better

project while Rantakari (2013) allows the principal to ex-ante publicly commit to a decision
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mechanism when experts have an unknown bias. In Moldovanu and Shi (2013) a committee

of experts receives new projects each period until one is adopted by unanimous consent.

More generally this paper relates to the literature on competition between experts; see

for example Gilligan and Krehbiel (1989), Krishna and Morgan (2001a; 2001b) as well as

Battaglini (2002). In each of these models, however, both experts observe the same state of

the world, whereas in the present paper each expert has private information about just one

dimension of the state.

In Quint and Hendricks (2013) bidders in a two-stage auction first report their valuations

by cheap talk and then enter the second stage to submit binding bids only if their first stage

report was among the highest two. In this way the bidders are competing in the first period.

However, in this model the seller commits to a message space and decision rule by which

the first stage winners are determined and together with other assumptions it is shown this

leads to partially aligned incentives for each bidder in the cheap talk stage. Our analysis

differs in that we do not assume the receiver can commit to a mechanism and our senders

do not have Crawford and Sobel (1982) style preferences.

The present paper is also related to preemption games in which competitors decide when

to end the game, where there is a first-mover advantage in doing so. Applications have

included the decision of when to patent an invention or introduce a new product (Bobtcheff

and Mariotti, 2012; Hopenhayn and Squintani, 2011; Hopenhayn and Squintani, 2015),

where waiting can help a firm by allowing it time to improve its product but risks being

preempted by a competitor. These models differ from the present paper in that they lack a

decision-making principal and termination of the game by an informed player is an assumed

feature of the model rather than an endogenous outcome.

Other models allow for influential communication with just a single agent through other

means such as reputation. For example, Kim (1996) explores how reputation can affect

cheap talk over an infinite horizon though unlike his paper we do not require infinitely

many periods nor do we have ex-post verifiability. Along similar lines Sobel (1985) explores

reputation in a cheap talk model in which the state is fixed across periods. Finally, in a static
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model Chakraborty and Harbaugh (2007) demonstrate that a single expert who observes all

dimensions of the state space can make credible comparative statements even when it would

not be credible on a single dimension.

In the next section, we present the model and then demonstrate that future periods

improve communication and payoffs when there is only one expert. Next we consider more

than one expert competing in each period and across time and establish that all symmetric

equilibria will involve a threshold strategy, provide conditions guaranteeing existence of

symmetric equilibria in a general setting, identify the Pareto dominant such equilibrium,

perform comparative statics, and discuss asymmetric equilibria. We then conclude.

2 Model

Let θi ∼ F be the independent and identically distributed profits generated from the project

available to expert i, for i = 1, 2, ..., n and n ≥ 1, where F is a C1 function, has finite

expectation, and full support on a closed connected set A ⊆ R+, with minA = 0. Assume

that F is common knowledge while the realization of θi is private information to expert i.

In contrast to other multiple-sender models, here expert i does not observe the outcome of

θj, j ̸= i. The experts simultaneously send cheap talk messages to the decision maker (DM)

who can choose at most one project to accept. Multiple project cannot be adopted, perhaps

due to resource constraints. We denote the DM’s choice by d ∈ {0, 1, 2, ..., n+ 1}, where

d = 0 means all projects are rejected and d = n+ 1 is an outside option always available to

the DM, with commonly known value θn+1 = r.

Payoffs in the stage game are as follows. For the project accepted the DM receives payoff

UDM(d) = θd. Each expert is highly biased in that he only receives positive utility if his own

project is adopted:

Ui(d) =

 0 if d ̸= i

θi if d = i
.

If the DM rejects all projects, then the game enters the next period with new independent
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draws for each θi such that i ̸= n + 1, and continues indefinitely until a project is adopted.

Projects are short-lived in that any project that has been rejected is lost and cannot be

brought back. Finally, future payoffs are discounted by δ ∈ (0, 1) and all players are expected

utility maximizers.

Let each expert’s message space be denoted by M , where M = R+. A strategy for expert

i is then a sequence of functions gi,s that for each period s maps from the history of the

game into ∆M , the set of all probability distributions over M . Formally, at period s the

history of the game for expert i is (θi,1, ..., θi,s)× (mi,1, ...,mi,s−1), where mi,k is the message

expert i sent in period k. A strategy for the DM is a sequence of functions hs that map from
n∏

j=1

(mj,1, ...,mj,s) into probability distributions over actions, ∆{0, 1, 2, ..., n+1}. We look for

a perfect Bayesian equilibrium that, unless otherwise stated, is stationary and non-babbling.

3 One expert

Initially we focus on the case of one expert and demonstrate that the existence of future

periods can improve communication and payoffs. Since the DM takes a binary action of

adopting the current project or not we will refer to any message that induces acceptance

or rejection as a recommendation to accept or reject, respectively. We begin by supposing

the game has just one period. But in this case the expert prefers all projects be adopted

regardless of the state and so any message he sends will be uninformative. Accordingly, the

DM accepts when the prior mean exceeds r and otherwise rejects. Thus,

Remark 1 With only one expert and one period, persuasive communication cannot occur.

Now suppose two periods exist and assume discount factor δ. Using backwards induction,

in the second period if 0 ≤ r ≤ E [θ] the DM will accept any project, the expected present

value of which is δE [θ]. This continuation value is enjoyed by the DM and the expert since

both can benefit from a better second period project. Then in the first period the expert

prefers adoption of only those projects exceeding δE[θ] while the DM wishes to only accept
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projects above max{δE[θ], r}. If r ≤ δE [θ] incentives are fully aligned in the first period. If

instead r > δE[θ], the outside option is always preferable to continuing for the DM and so

the second period will not be reached. But then the expert attempts to induce acceptance

of all first period projects and persuasive communication breaks down. We record these

observations below.

Remark 2 With one expert and two periods, persuasive communication can occur in the first

period only if r ≤ δE [θ]. In this case, in any equilibrium the expert recommends acceptance

when θ ≥ δE[θ] and rejection otherwise, while the DM follows all recommendations.

When r ≤ δE[θ] the existence of a second period improves outcomes. By having a future

to look forward to, the expert is willing to recommend rejection of low quality projects in the

first period since it is likely a better one can be obtained next period. This leads to higher

expected payoffs, since
∫∞
0

max{δE[θ], θ} dF (θ) >
∫∞
0

θ dF (θ). This last fact also shows that

in a three-period game the continuation value from the two period subgame exceeds δE[θ],

and thus so too would the threshold used in the first period. Extending this logic, it can be

seen that the first-period threshold always increases in the total number of periods.

Finally we demonstrate that allowing the game to repeat indefinitely can further improve

communication and payoffs. Initially consider r = 0 so that there is no divergence in incen-

tives. There is no last period so we conjecture projects are adopted only if they exceed a

threshold t. This is a familiar optimal stopping problem and the threshold must satisfy

t = δ

∫ ∞

t

θ dF (θ)
∞∑
i=0

(δF (t))i ⇐⇒

t =
δ

1− δF (t)

∫ ∞

t

θ dF (θ) . (1)

Lemma 1 Equation (1) has a unique solution t̂ which increases in δ, and the DM’s payoff

is single-peaked at t̂.

Proof See the appendix.
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To show the adoption threshold is more stringent with infinitely many periods than two

(t̂ > δE [θ]) is straightforward. Now suppose r > 0, and we note the logic proceeds much

the same as in the two period case. The expert prefers adoption only if the project exceeds

t̂ while the DM’s preferred threshold is max{t̂, r}, and thus when r ≤ t̂ incentives are fully

aligned. If instead r > t̂, future periods have no effect since the DM prefers the outside

option to continuing, the expert therefore attempts to induce acceptance of all projects, and

persuasive communication breaks down. We summarize these observations below.

Remark 3 With one expert and infinitely many periods, persuasive communication can oc-

cur only if r ≤ t̂ from Lemma 1. In this case, in any equilibrium in each period the expert

recommends acceptance when θ > t̂ and rejection otherwise, while the DM follows all recom-

mendations.

Infinite repetition thus supports even higher payoffs than a single repetition. First, the ex-

pert will use a more conservative recommendation threshold because of the higher continua-

tion value, which increases the expected payoff since
∫∞
0

max{t̂, θ} dF (θ) >
∫∞
0

max{δE[θ], θ} dF (θ).

Second, because of this increase in the threshold, persuasive communication can be supported

for a larger range of outside options, a general property that is demonstrated in the example

below.

Example 1 Let θ ∼ U [0, 1] be i.i.d. across periods and δ = 0.8. Table I below records

payoffs and the values of the DM’s outside option that support persuasive communication in

a game with one, two, or infinitely many periods. The expected payoff shown for a one period

game results from the babbling equilibrium while all other payoffs are for equilibria in which

persuasion occurs.
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Table I: First period outcomes in Example 1

Number of
periods

Persuasive communication
is supported payoffs

Expected

1 ∅ 0.5

2 r ≤ .4 0.58

∞ r ≤ 0.5 0.625

We conclude this section by commenting on the shared features of our one sender model

with the comparative cheap talk literature (e.g., Chakraborty and Harbaugh, 2007 and 2010;

Che, Dessein, and Kartik, 2013). To see this, suppose the game has reached period s and

the expert must decide whether to recommend the adoption of the project whose value is

θs.
1 A recommendation to adopt indicates the current project is better than what will likely

arise in the future, while a recommendation to reject indicates the converse. That is, the

expert makes a comparative cheap talk statement that ranks the two relevant dimensions

of the state space: this period’s project versus next period and beyond. However, in our

model the expert does not have private information about future states, in contrast to static

comparative cheap talk models in which the expert observes all dimensions of the state. It

is for this reason, for example, that the pandering effect found in Che, Dessein, and Kartik

(2013) is not present here.

In our model comparative statements can be informative due to an endogenous oppor-

tunity cost of lying. If the expert induces acceptance by falsely ranking the current project

ahead of what can be expected in the future, then he himself suffers from the forgone benefit

of continuing in the game. The continuation value depends on the discount factor δ and

the number of periods the game might have. Lower δ increases the relative value of the

present and so causes the expert to recommend adoption of the current project more often;

1Pursuant to the strategies in Remark 3, having reached period s implies the prior s − 1 projects were
below the threshold t̂. Since the θ are i.i.d. any previously rejected project would never be returned to and
so the decision reduces to recommending this period’s project or not. This observation demonstrates that
when restricting to stationary equilibria, the no recall assumption is without loss of generality.
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that is, t̂ decreases per Lemma 1. Thus when the present is more highly valued by the

expert communication is supported for a smaller set of values of the DM’s outside option. In

the next section we explore another reason the present may be more highly valued, namely

competition with other experts.

4 Competition among experts

Having seen that future periods help improve communication between a single expert and the

DM, we now consider the effect of competition between experts to have their own favored

projects adopted. Because expert i only observes θi and receives payoff 0 when project

j ̸= i is adopted, if there is only one period all experts always recommend adoption of

their project. However, when a second period exists an expert with a low realization may

recommend rejection of his own project in the hopes that both next period will be reached and

a better project will be realized and accepted then. We proceed by showing any equilibrium

entails use of a threshold strategy and then consider equilibrium existence, selection, and

comparative statics.

Proposition 1 (Equilibrium characterization) In any symmetric equilibrium there is

a threshold t∗ such that projects θ ≤ t∗ are rejected while θ > t∗ are recommended for

acceptance. If one or more project is recommended the DM chooses one of these to adopt

with equal probability.

Proof We first prove a threshold is used. Given any strategy, the continuation value from

inducing rejection is invariant to type while the expected payoff from inducing acceptance

is increasing in type. Thus any message must be sent by a connected set of types. Next,

project adoption can only be recommended for one set of pooled states. If not, then any type

assigned to a message accepted with lower probability would defect to a message accepted

with a higher probability.

Next, if a single expert prefers his project be rejected then the DM does a fortiori since

the latter benefits when any expert’s future project is above the threshold. Finally, given
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the experts employ a stationary threshold strategy it is a best response for the DM to accept

a recommended project with probability 1
j
when j ≥ 1 projects are recommended, and reject

when rejection is recommended by all experts.

Due to the continuation value of the game, an expert may prefer that his relatively low-

quality project be rejected in the hope that he obtains a better project should next period

be reached. This implies the DM would also prefer such a project be rejected since he is

concerned with the more likely possibility that any expert receives a better project. In

addition, waiting for a possibly better project next period in the single expert case only

incurs the single expert a time delay cost while competing experts are also cognizant that

the game may terminate this period, which we will show causes competing experts to use a

lower threshold.

We now turn to equilibrium existence. In a symmetric equilibrium the threshold type

must satisfy an indifference condition that equates the payoffs from recommending accep-

tance or rejection. By recommending acceptance an expert knows the game has ended: either

his own project is selected, or a competing expert’s project was recommended and accepted.

Define A (t) ≡
n−1∑
i=0

(
n−1
i

)
F (t)n−1−i[1−F (t)]i

1+i
, the probability an expert’s project is chosen given

he recommends it when all experts use threshold t. This probability depends on how likely

no other experts recommend acceptance, exactly one does, exactly two do, and so on, where

each project is accepted with equal probability if more than one is recommended.

An expert that recommends rejection continues in the game only when all other experts

likewise have recommended rejection. In this case an expert may realize a type above the

threshold next period and so win with probability A(t), or else has the chance of a non-zero

payoff if all other experts again have a type below the threshold. This argument repeats,

and implies a continuation value from rejection which is equated to the expected payoff of
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recommending acceptance:

t A (t) = δF (t)n−1

(
A (t)

∫ ∞

t

θdF (θ) + δF (t)n
(
A (t)

∫ ∞

t

θdF (θ) + δF (t)n (...)

))
⇐⇒

t A (t) =
∞∑
ℓ=0

A (t)

∫ ∞

t

θdF (θ) δF (t)n−1 [δF (t)n]
ℓ ⇐⇒

t =
δF (t)n−1

1− δF (t)n

∫ ∞

t

θdF (θ) (2)

In the first line, the ellipses in the last parentheses repeats the expressions given in the

big parentheses. The second line uses summation notation for this infinite sum, and the

third line reduces the sum and cancels the common A (t) term. Line 2 is a generalization

of line 1 for n > 1 senders, and satisfying the sender constraints thus reduces to finding a

fixed point of G (t) ≡ δF (t)n−1

1−δF (t)n

∫∞
t

θ dF (θ). Given this, the following properties of G(t) will

be useful.

Lemma 2

(i). G (t) is continuous, G (0) = 0, and limt→∞ G (t) = 0.

(ii). G′ (t) is continuous and G′ (0) =

 δf (0)E [θ] if n = 2

0 if n > 2
.

(iii). Let t0 > 0 be the largest fixed point of G. Then G′ (t0) ≤ 1, and if θ is bounded above

by θ then t0 <
θ
n
.

Proof See the appendix.

We are now ready to give necessary and sufficient conditions for the existence of a sym-

metric equilibrium. Let Π(t) denote the DM’s expected payoff in a symmetric equilibrium

with threshold t. Finally, unless otherwise specified all references to fixed points of G will

refer to non-zero fixed points.
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Proposition 2 (Existence of equilibria) A symmetric threshold t∗ satisfies each expert’s

incentive compatibility constraint if and only if G (t∗) = t∗. At least one fixed point of G

exists if n = 2 and E [θ] > 1/δf (0); otherwise, at least two fixed points exist if there is a t

such that G (t) > t. The DM’s constraints are satisfied if and only if r ≤ δΠ(t∗).

Proof From the discussion above, satisfying the sender constraints reduces to finding a fixed

point of G (t). By Lemma 2, G (0) = 0 and if n > 2 then G′ (0) = 0. Since limt→∞ G (t) = 0,

if there is a t such that G (t) > t then there are at least two fixed points since G is continuous.

In fact this argument only requires G′ (0) < 1 and thus it applies when n = 2 and E [θ] <

1/δf (0), since by Lemma 2(ii) G′ (0) < 1 in this case. If n = 2 and E [θ] > 1/δf (0) then

G′ (0) > 1 and thus limt→∞ G (t) = 0 implies at least one fixed point exists.

Regarding the DM’s constraints, r ≤ E [θ|θ > t∗] is required to induce acceptance, and

the DM will continue in the game only if r ≤ δΠ(t∗). This latter condition implies the former

since the DM’s expected payoff is strictly less than E [θ|θ > t∗], as an immediate success is

not guaranteed (see Lemma 3 for an explicit calculation of Π(t∗)).

By inspection of G (t) = δF (t)n−1

1−δF (t)n

∫∞
t

θ dF (θ) the condition that G (t) > t occur is satisfied

when, for example, F (t) is large for small t but E [θ|θ > t] is nonetheless high. Intuitively,

the probability of low realizations must be high enough that an expert with a low outcome

doesn’t fear being preempted by a competing expert, but at the same time the expectation

of a new project must be sufficiently high that the continuation value from proceeding to the

next period is enticing enough.2 When these conditions fail only a babbling equilibrium in

which experts recommend all project types be adopted (t = 0) exists,3 as depicted in Figure

1(a). This is in stark contrast to the single expert case, in which the existence of a non-

trivial threshold was guaranteed for any distribution. In fact, if δ = 1 a single expert would

never recommend acceptance (t = ∞) while two competing experts may instead always do

so (t = 0), or if E [θ] > 1/f (0) use a non-zero but finite threshold.

2The conditions on existence can also be interpreted as requiring the equilibrium threshold not be too
close to 0. If the threshold were, an expert would never want to recommend rejection since the probability of
continuing in the game would be too low relative to any expected gains that could be realized by delaying,
and so recommending acceptance now with with some chance of being selected would be preferred.

3A babbling equilibrium always exists since G(0) = 0 by Lemma 2(i).
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Figure 1: Each sender’s incentive compatibility constraint is satisfied for fixed points of G. In
panel (a) only a babbling equilibrium (t = 0) exists; in panel (b) there is a unique non-trivial
equilibrium which is knife-edge; in panel (c) there are four non-trivial equilibrium thresholds.

Though informative communication is harder to sustain when experts compete, repetition

of the stage game may help in a nuanced way. The DM does not directly observe the state

and therefore does not benefit from a typical order statistic effect from, say, adding another

period or increasing the discount factor in a decision problem. Instead the DM only infers

the average quality of a recommended project given the experts’ threshold, so that the

communication strategy used in the future affects how valuable the future will be. For this

reason n and δ have an indirect effect on payoffs and communication through the threshold.

We explore such comparative statics further in a later subsection, but we first select an

equilibrium.

Equilibrium selection

By Proposition 2 several non-trivial equilibria can exist, an example of which is depicted in

Figure 1(c). In addition, since G(0) = 0 there is always a trivial equilibrium with t = 0

in which all projects are recommended regardless of their type. In Section 5 we show there

are also equilibria in which some player(s) babble and are ignored by the DM while other

players use non-zero thresholds. For the time being we restrict away from these cases, show

that any equilibrium must therefore be symmetric, and select an equilibrium which is Pareto
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dominant.

Definition 1 An expert is influential in an equilibrium if in each period there is a positive

probability his recommended project is accepted, given the messages of the other experts.

Proposition 3 Any equilibrium in which each expert is influential is symmetric.

Proof By the proof of Proposition 1 in any equilibrium an expert i uses a threshold strat-

egy ti. We claim each expert’s best-response threshold is increasing in the other experts’

thresholds and establish this by proving ∂t1
∂ti

> 0 for all i ̸= 1. The indifference condition for

threshold t1, analogous to that in line 2, is

t1 =
δ Πn

j=2F (tj)

1− δ Πn
j=1F (tj)

∫ ∞

t1

θ dF (θ) . (3)

Let t∗ ≡ (t1, ..., tn) be a solution to line 3 and defineH (t1, ...tn) =
δ Πn

j=2F (tj)

1−δ Πn
j=1F (tj)

∫∞
t1

θ dF (θ)−

t1. By the implicit function theorem ∂t1
∂ti

(t∗) = −
∂H
∂ti

(t∗)

∂H
∂t1

(t∗)
. We now show ∂H

∂ti
(t∗) > 0 for i ̸= 1.

∂H

∂ti
(t∗) = δ

((
1− δΠn

j=1F (tj)
)
f (ti) Πn

j=2,̸=iF (tj) +
(
Πn

j=2F (tj)
)
f (ti) δ Πn

j=2,̸=iF (tj)(
1− δΠn

j=1F (tj)
)2

)∫ ∞

t1

θ dF (θ)

and thus ∂H
∂ti

(t∗) > 0 since both the numerator and denominator are positive. Finally, we

show ∂H
∂t1

(t∗) < 0 and thus conclude ∂t1
∂ti

(t∗) > 0.

∂H

∂t1
(t∗) = −t1f (t1)

(
δ Πn

j=2F (tj)

1− δ Πn
j=1F (tj)

)
+

(
−
(
δ Πn

j=2F (tj)
) (

−f (t1) δ Πn
j=2F (tj)

)(
1− δ Πn

j=1F (tj)
)2

)∫ ∞

t1

θ dF (θ)−1

and rearranging terms and substituting from line 3 gives ∂H
∂t1

(t∗) = −1 < 0. Thus each

expert’s threshold is increasing each other expert’s threshold.

Finally, toward a contradiction suppose there exists an asymmetric equilibrium in which

each expert is influential. Then there exist experts i and j such that ti > tj. If these

thresholds are part of an equilibrium then the symmetry of the players’ type distributions
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implies there is also an otherwise identical equilibrium in which expert i uses threshold tj

and expert j uses threshold ti, contradicting the fact that each best response threshold is

increasing in other experts’ thresholds.

Proposition 3 together with Proposition 1 go a long way towards characterizing the

equilibrium set: any stationary equilibrium in which each expert is influential must be sym-

metric, and any symmetric equilibrium must conform to Proposition 1. We augment this

characterization in Section 5 by discussing stationary equilibria in which some players are

not influential. We now proceed by selecting a symmetric equilibrium and to this end we

establish the following lemma.

Lemma 3 The DM’s expected payoff is 1−F (t)n

1−δF (t)n
E [θ|θ > t] while each of the n experts’ ex-

pected payoff is 1
n
of this.

Proof The DM’s expected payoff with threshold t and discount factor δ is

∞∑
i=0

[δF (t)n]
i
(1− F (t)n)E [θ|θ > t] =

1− F (t)n

1− δF (t)n
E [θ|θ > t]

while each expert’s expected payoff is

∞∑
i=0

[δF (t)n]
i
(1− F (t))A (t)E [θ|θ > t] =

(1− F (t))A (t)E [θ|θ > t]

1− δF (t)n
.

Eliminating common terms the result then follows since

1− F (t)n

1− F (t)
=

n−1∑
i=0

F (t)i = n A (t) .

Intuitively, since experts are ex-ante identical and use symmetric strategies the probabil-

ity any particular expert’s project is selected is 1
n
. In addition, as soon as the DM accepts

an expert’s project the game ends and that expert and the DM receive the same payoff, the

expectation of which is E [θ|θ > t∗]. Thus among the set of equilibrium thresholds the DM
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0 t∗1 ≈ 0.470 t∗2 ≈ 0.961 threshold

G(t)

t

Figure 2: Determination of equilibrium thresholds for Example 2

and each expert share the same maximizer, a result we utilize below.

Proposition 4 The equilibrium with the highest threshold is Pareto dominant.

Proof A Pareto ranking follows from Lemma 3. To show the highest equilibrium threshold

is Pareto dominant we note that (i) it suffices to track the DM’s payoff; (ii) letting Fn ∼

max{θ1, ..., θn} in Lemma 1 there is a tDM
n at which the DM’s payoff is single-peaked, and

tDM
n is increasing in n since Fn first-order stochastically dominates Fm for n > m; and (iii)

in any symmetric equilibrium with n > 1 the equilibrium threshold t < tDM
1 (by Proposition

5(ii) below).

We henceforth focus on the Pareto dominant symmetric equilibrium. Next we present a

stylized example in which multiple equilibria exist.

Example 2 Let δ = 1 and suppose the DM will adopt one project from among three experts

whose projects are i.i.d. with pdf parameterized by b ≥ 1 as follows:

f (θ; b) =


1− θ if θ ∈ [0, 1]

1 if θ ∈ [b, b+ 0.5]

0 otherwise
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and let F (t; b) be the corresponding CDF.4 Thus F (t; b) is invariant to b for t ≤ 1 but

E [θ|θ > t] is increasing in b and so an equilibrium threshold exists for high enough b. Figure 2

graphs G (t) for b = 6.5 and shows there are two thresholds that satisfy the sender constraints,

t∗1 ≈ 0.470 and t∗2 ≈ 0.961. If the DM’s outside option r < δΠ(t∗1) ≈ 5.412 both thresholds

constitute an equilibrium though t∗2 is Pareto dominant. If r > δΠ(t∗2) ≈ 6.741 the DM will

always reject while for intermediate r only t∗2 is an equilibrium threshold.

5 Factors affecting the DM’s payoff

In this section we explore how the equilibrium threshold responds to the rate of time dis-

counting and the number of players, and how each affects the DM’s payoff. Then using these

results we show the DM’s payoff may be highest in an asymmetric equilibrium in which some

experts are not influential.

Comparative statics

Since each expert’s recommendation is a comparison of his current project to the future,

anything that increases the relative value of the future will induce experts to recommend

adoption of their current project less often; that is, each expert will use a higher threshold.

In turn the DM will infer a higher expected type for those projects that are recommended,

leading to acceptance for a larger range of values of the outside option r. In this subsection we

analyze two factors that increase the value of the future: less competition between experts,

which implies a higher likelihood that future periods will be reached, and a higher discount

factor.

Proposition 5 In the Pareto dominant symmetric equilibrium,

(i). the equilibrium threshold t∗ increases in the discount factor δ, resulting in a higher

payoff for the DM from both the direct effect of δ and the indirect effect of t∗; and

4Although f is not continuous and differentiable at every point of its domain it is for θ < 1 and thus the
properties of G (t) previously established hold when t < 1.
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(ii). the equilibrium threshold t∗ decreases in the number of experts, n.

Proof See the appendix.

When the future is discounted less (higher δ) there is a direct effect that improves payoffs

but also an indirect effect through the equilibrium threshold. With higher δ the value of

waiting for a better project increases for the DM and each expert. This makes experts

more willing to divulge information about states that are relatively low and improves payoffs

since the DM also prefers to reject these low states. A similar logic regarding the threshold

applies when there are fewer competing experts and thus a higher probability that the game

continues.5 However, the effect of more experts on the DM’s payoff is less straightforward

since the direct effect of receiving another draw from the distribution is offset by the indirect

effect of the lower threshold this induces.

Expanding on our earlier notation, let Π(t, n) be the DM’s expected profit from n experts

each using threshold t, and t∗n be the symmetric equilibrium threshold with n experts. We

decompose the two effects in the identity below:

Π(t∗n, n)− Π(t∗n−1, n− 1)︸ ︷︷ ︸ = Π(t∗n, n)− Π(t∗n−1, n)︸ ︷︷ ︸ + Π(t∗n−1, n)− Π(t∗n−1, n− 1)︸ ︷︷ ︸
Effect of an Loss from Gain from

additional expert lower threshold quicker success

The right-most term shows the gain to the DM from an additional expert given a fixed

threshold, which arises from the increased likelihood that at least one expert’s project exceeds

the threshold and thus is adopted immediately. The greater is the rate of time-discounting

(lower δ) the larger is the benefit from more quickly adopting a project. The other term

in the decomposition captures the loss to the DM from a lower threshold, keeping fixed the

number of experts. Letting Fn ∼ max{θ1, ..., θn} we can apply Lemma 1 to conclude there is

5An earlier version of the paper explored another means by which competition can decrease: allowing
the DM to select k < n projects to fund over the course of the game. For simplicity suppose that if an
expert’s project is chosen that expert is removed from the game in all subsequent periods should they arise,
and assume the number of remaining projects to be selected is commonly known. Then higher k directly
improves the DM’s payoff but also indirectly does so by inducing a higher equilibrium threshold.
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a threshold at which the DM’s payoff is single-peaked. When n > 1 this threshold exceeds

the equilibrium threshold and so t∗n < t∗n−1 (by Proposition 5(ii)) implies a lower payoff for

the DM.

In summary, by consulting an additional expert the DM avoids time-delay costs by more

quickly generating a successful project but harms communication which reduces the average

quality of an accepted project. The net effect is unclear in general but depends on the

rate of time discounting. By Lemma 3 when δ = 1 the DM’s payoff is E [θ|θ > t∗], which

decreases in n since t∗ does, and so by the continuity of Π in δ this result remains true

for δ sufficiently close to 1. In other words, when time-discounting is not too severe the

gain from a quicker success is small and dominated by the loss from a lower threshold, and

thus consulting more experts always harms the DM in this case. For lower values of δ the

tradeoff must be explicitly calculated. However, this depends in part on the magnitude of

∂2t∗

∂n2 and is intractable. Example 3 below demonstrates that Π can increase in the number of

experts over some range, though in general Π must eventually decrease with n as a babbling

equilibrium is approached.

Proposition 6 There exists a δ̃ < 1 such that the DM’s payoff decreases in the number of

experts when δ ≥ δ̃. When δ < δ̃ there exists an ñ such that the DM’s payoff decreases in n

when n ≥ ñ.

Proof See the appendix.

Example 3 Let δ = 0.7 and suppose θi ∼ B
(
1
5
, 1
5

)
have a Beta distribution. Table II shows

how the equilibrium threshold and the DM’s payoff vary with the number of experts. In

addition, it records the values of the DM’s outside option for which a non-trivial equilibrium is

supported. The DM’s payoff increases from 1 to 2 experts and decreases thereafter. Numerical

calculations show that for δ ≥ δ̃ ≈ 0.816 the DM’s payoff always decreases in n.

Now suppose further n = 1 and r = 0.6. Since r > 0.484 only a trivial equilibrium

exists in which the DM always takes his outside option and the expert babbles, resulting in

payoffs of 0.6 and 0, respectively. In contrast, if the DM’s outside option were weak enough
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Table II

Number of
experts, n

Equilibrium
threshold, t∗

DM’s payoff,
Π

DM’s outside option
supporting t∗ > 0

1 0.484 0.691 r ∈ [0, 0.484]
2 0.136 0.735 r ∈ [0, 0.515]
3 0.021 0.657 r ∈ [0, 0.460]
4 0.001 0.568 r ∈ [0, 0.397]

5 or more 0 0.5 r ∈ [0, 0.35]

(r ≤ 0.484) meaningful communication would be possible and result in an expected payoff of

0.691 for both. The DM’s inability to commit against using his outside option may therefore

reduce his payoff, a result that holds generally. See the appendix for further discussion of

equilibrium existence and properties for the symmetric Beta distribution.

Asymmetric equilibria

Given the DM can benefit from consulting fewer experts we now turn to asymmetric equilibria

in which not all experts are influential. We first examine asymmetric equilibria that are

stationary. Next we consider the full set of equilibria and show that when time discounting

is not too severe the DM’s payoff is highest in a stationary equilibrium in which only one

expert is consulted.

Any symmetric equilibrium with n experts can be changed into an asymmetric equilib-

rium as follows. Specify i < n experts who will babble while the remaining (n − i) experts

play the equilibrium strategy that ensues in the symmetric case with (n− i) experts. Given

these strategies the DM will ignore the babbling experts and accept projects from the other

experts as in the symmetric case. It is plain to see these strategies constitute mutual best

responses. This observation together with Proposition 3 then provides a characterization

of all stationary equilibria in which each expert is influential or babbles: the experts either

use a symmetric threshold strategy as described in Proposition 1, or some subset of them

22



do while the others babble (use threshold 0).6 Thus all the equilibrium properties derived

in the prior sections still apply in this setting, including existence (Proposition 2), selection

(Proposition 4), and comparative statics (Propositions 5 and 6).

It then follows that when the hypothesis of Proposition 6 is satisfied, among stationary

equilibria the DM prefers any in which the same single expert is consulted. In fact the

proposition below shows this remains true when selecting from among the entire set of

equilibria.

Proposition 7 There exists δ̄ < 1 such that when δ ≥ δ̄ the DM’s expected payoff is highest

among all equilibria in a stationary equilibrium in which only one expert is influential.

Proof See the appendix.

This finding can be compared to a result in Li’s (2016) model of sequential cheap talk.

There two experts with an additive Crawford and Sobel (1982) style bias compete over time

to have their own projects implemented, where only one expert is consulted (“active”) in each

period, and expert i does not observe j’s project. The DM commits to a Markov decision

rule that probabilistically determines which single expert will be active in each period, and

this process continues until one project is adopted. Letting p denote the probability that the

expert who was active this period remains active next period, Li parameterizes the amount

of competition between experts across time, where p = 1 results in the same expert being

consulted each period (no competition) and p = 0 results in the two experts alternating

across periods (most competition).7

6To get an idea of what lies outside this set, consider the following example of a stationary equilibrium in
which an expert is neither babbling nor influential. Suppose there are two experts and let r = 0. Conjecture
the DM accepts a project from either expert if only one has recommended acceptance, rejects when both
recommend rejection, but always accepts Expert 1’s project when both experts recommend acceptance.
Then Expert 1 uses a higher threshold than Expert 2 since the former has higher continuation value than
the latter, but Expert 2 need not babble since he has some positive continuation value. Thus a stationary
equilibrium can be supported where Expert 2 does not babble yet also is not influential since, given Expert 1’s
recommendation to accept, Expert 2’s project is never adopted. I thank an anonymous referee for suggesting
this example.

7This last case can be reproduced in our model without commitment in a non-stationary equilibrium. To
see this, conjecture an equilibrium in which expert 1 is ignored only if the period is odd while expert 2 is
ignored only if the period is even, and all other experts are always ignored. Given this, it is a best response
for each expert to babble during the periods he is ignored and use an optimal threshold strategy otherwise.
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Considering all p ∈ [0, 1] Li finds the best decision rule for the DM involves no alternation

between experts at all but instead consulting the same expert each period (p = 1). This fol-

lows in his base model because competition over time between experts reduces the threshold

each uses further below what the DM prefers, without any offsetting benefit. In the present

paper increased competition in the form of consulting an additional expert each period also

results in a loss by inducing greater exaggeration (a lower threshold), but this effect is in part

offset by a gain in the form of a quicker success. Interestingly, a similar tradeoff is present in

a generalization of Li’s base model in which he endogenizes the search effort of the experts.

Let s be the probability an expert receives a draw from the distribution; otherwise no project

is obtained and the next period commences. Higher effort benefits the DM by increasing the

chance a project will be generated, which then might exceed the threshold and be accepted.

However, experts incur an increasing marginal cost to raise s and so may not exert enough

search effort. In this setting Li finds that competition between experts across time induces

a lower threshold that harms the DM, but this effect may be offset by the increased effort

that an expert facing competition will exert. In other words, more competition (in the form

of lower p) implies the quicker adoption of a lower quality project. Our results complement

Li’s in that we find the same basic tradeoff in a setting with competition both across time

and within each period, and where the DM lacks commitment power.

6 Conclusion

When a decision maker consults multiple experts about which project to adopt, the informa-

tion revealed by each expert will depend on both the amount of competition between experts

and whether new projects arrive over time. In this paper we develop a model of competitive

cheap talk in which n experts receive i.i.d. projects each period and vie to have their own

project adopted by the decision maker through simultaneously reporting their type by cheap

talk. Each expert is only informed of the quality of his own current project and only one

project will ultimately be adopted due to resource constraints.
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When experts compete we show that any symmetric equilibrium is characterized by a

threshold above which states are recommended for adoption and below which will be rejected.

Since the DM has the option to reject all experts’ projects and proceed to the next period,

recommendations can be viewed as comparative cheap talk about the current project versus

what is expected in the future. Multiple symmetric equilibria may exist though we show the

equilibrium with the highest threshold is Pareto dominant. One main finding is that in any

symmetric equilibrium each expert’s threshold is decreasing in the amount of competition

and increasing in the value of future periods. The logic behind each result is the same: an

expert is willing to divulge that his type is low and thus be rejected in the current period

if the value from continuing in the game is high enough. More experts imply a higher

probability the game will terminate this period and thus a lower continuation value, while a

higher discount factor has the opposite effect.

The number of experts also affects payoffs. On the one hand, more experts induce

more exaggeration and so lower the average quality of a recommended project, while on

the other hand higher n implies a successful project will be adopted more quickly. When

time discounting is not too severe, the former communication effect dominates the latter

time effect and the DM is harmed by consulting more experts. For this reason asymmetric

equilibria in which all but one expert babble and are ignored can be best for the DM.

Appendix: proofs of lemmas and propositions

Proof of Lemma 1

Letting n = 1 in Lemma 3, the DM’s expected payoff using threshold t is (1−F (t))E[θ|θ>t]
1−δF (t)

=∫∞
t θ dF (θ)

1−δF (t)
. Differentiating with respect to t gives

−t f (t)

1− δF (t)
+

δ f (t)
∫∞
t

θ dF (θ)

(1− δF (t))2
. (4)
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Setting line 4 equal to 0 and rearranging terms yields∫∞
t

θ dF (θ)

1− δF (t)
=

t

δ
, (5)

which is equivalent to line 1. Differentiating line 4 with respect to t gives

− (f (t) + t f ′ (t))

1− δF (t)
− −t f (t) (−δf (t))

(1− δF (t))2

+
−t f (t) δf (t) + δf ′ (t)

∫∞
t

θ dF (θ)

(1− δF (t))2
−

2
∫∞
t

θ dF (θ) δf (t) (−δf (t))

(1− δF (t))3
. (6)

Substituting the right hand side of line 5 into the terms in line 6 gives the value of the second

derivative when the first order condition is satisfied:

− (f (t) + t f ′ (t))

1− δF (t)
− t f (t)2 δ

(1− δF (t))2
− t f (t)2 δ

(1− δF (t))2
+

t f ′ (t)

(1− δF (t))
+

2tf (t)2 δ

(1− δF (t))2

=
−f (t)

1− δF (t)
< 0.

Thus if a critical point exists it is a maximum. Furthermore, since all critical points are

maxima there is a unique maximum, and so the function is single-peaked at the maximizer.

To prove existence of the maximizer, we use line 5 and observe
δ
∫∞
t θ dF (θ)

1−δF (t)
indeed has a fixed

point: the function is continuous, is positive for t = 0, and approaches 0 as t → ∞. Finally,

by inspection the right hand side of line 1 increases in δ and thus by the implicit function

theorem ∂t̂
∂δ

> 0.
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Proof of Lemma 2

For part (i), the continuity of G (t) follows from the continuity of F (t) and G (0) = 0 by

direct computation. Next, limt→∞ G (t) = δ
1−δ

× 0 = 0. For part (ii), G′ (t) calculates to

∂

∂t

(
δF (t)n−1

1− δF (t)n

)∫ ∞

t

θdF (θ) +
δF (t)n−1

1− δF (t)n
∂

∂t

(∫ ∞

t

θdF (θ)

)
. (7)

Next, ∂
∂t

(∫∞
t

θdF (θ)
)
= −t f (t) and thus when t = 0 the second term in line 7 evaluates

to 0 for n ≥ 2. Next,

∂

∂t

(
δF (t)n−1

1− δF (t)n

)
=

(1− δF (t)n) (n− 1) δF (t)n−2 f (t) + δF (t)n−1 nδF (t)n−1 f (t)

(1− δF (t)n)
2 (8)

and this evaluates to 0 when t = 0 and n > 2 while if n = 2 it becomes

(1− δF (t)n) (n− 1) δF (t)n−2 f (t)

(1− δF (t)n)
2 =

δf (0)

1− δF (0)2
= δf (0)

and the result follows by substituting this into line 7. Finally, G′ (t) is continuous by the

continuity of f and lines 7 and 8.

Part (iii). Let t0 be the largest t such that G (t) = t. Then the graph of G cannot cross

the graph of t from below at t0, since this implies G (t0 + ϵ) > t0 + ϵ for sufficiently small

ϵ > 0 by the continuity of G. But then by part (i) of this lemma there must be another

fixed point t1 > t0 since G → 0 in the limit, a contradiction. Thus at t0 the graph of G (t)

crosses t from above, or is just tangent to it. In the former case G′ (t0) < 1 while in the

latter G′ (t0) = 1.

We now prove t0 <
θ
n
if θ is bounded above by θ. First, denote the upper bound of G by

x and note t0 ≤ x. Next, by inspection ∂G
∂δ

> 0 for all t > 0, and so it suffices to bound G

by θ
n
for δ = 1:

G (t; δ = 1) =
F (t)n−1

1− F (t)n

∫ ∞

t

θdF (θ) =

(
F (t)n−1∑n−1
i=0 F (t)i

)
E [θ|θ ≥ t] . (9)
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We claim line 9 increases in t. Since E [θ|θ ≥ t] obviously increases in t it suffices to show

∂

∂t

(
F (t)n−1∑n−1
i=0 F (t)i

)
=

(n− 1)F (t)n−2 f (t)
∑n−1

i=0 F (t)i − F (t)n−1 ∂
∂t

(∑n−1
i=0 F (t)i

)
(∑n−1

i=0 F (t)i
)2 > 0.

This is true since the numerator is positive, which follows from

(n− 1)F (t)n−2 f (t)
n−1∑
i=0

F (t)i > F (t)n−1 ∂

∂t

(
n−1∑
i=0

F (t)i
)

⇐⇒

n−1∑
i=0

(n− 1)F (t)i > F (t)

(
n−2∑
i=0

(1 + i)F (t)i
)
,

where the equivalence is established by evaluating the derivative and dividing by F (t)n−2

and the last inequality holds since the left hand side is larger than even the term in the

parentheses on the right hand side. Finally, since G (t; δ = 1) is increasing in t, taking the

limit of line 9 as t → θ gives the result.

Proof of Proposition 5

Part (i). By inspection, ∂G
∂δ

> 0. Next, by Lemma 2(iii) either G′ (t∗) < 1 and so ∂G
∂δ

> 0 and

the implicit function theorem imply ∂t∗

∂δ
> 0, or G′ (t∗) = 1 and so G (t∗) is tangent to t and

thus by ∂G
∂δ

> 0 higher δ gives rise to two fixed points, the greater of which exceeds t∗. Thus

∂t∗

∂δ
> 0. The change in the DM’s payoff with respect to δ can be decomposed into a direct

and indirect effect:

∂

∂δ

(
1− F (t∗)n

1− δF (t∗)n
E [θ|θ > t∗]

)
+

∂

∂t∗

(
1− F (t∗)n

1− δF (t∗)n
E [θ|θ > t∗]

)
∂t∗

∂δ
.

The first term is positive by inspection while ∂t∗

∂δ
> 0 was just proved. Finally, the DM’s

payoff increases in t by arguments (ii) and (iii) in the proof of Proposition 4.

Part (ii). By Lemma 2(iii), G′ (t∗) ≤ 1 and so it suffices to show that G (t) is decreasing

in n for all t. Since G(t;n) = δF (t)n−1

1−δF (t)n

∫∞
t

θ dF (θ) the statement follows, as F (t)n−1 and
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F (t)n are decreasing in n for all t > 0.

Proof of Proposition 6

By Lemma 3, Π(n, t) = 1−F (t)n

1−δF (t)n
E [θ|θ > t]. When δ = 1 this reduces to E [θ|θ > t], which

clearly decreases in t. Then, by Proposition 5(ii) we have t∗ decreasing in n, and thus

Π(n, t∗) decreasing in n. Next, for any δ if t∗i = 0 then t∗j = 0 for all j > i. Additionally,

observe that Π is continuous in δ and thus there exists a δ̃ < 1 such that the ordering

Π(1, t∗1) ≥ Π(2, t∗2) ≥ ... from δ = 1 is preserved when δ ≥ δ̃, where the inequality between

any Π(i, t∗i ) and Π(i+ 1, t∗i+1) is strict when t∗i > 0 and holds with equality when t∗i = 0.

To complete the proof of the first sentence of the proposition we note that δΠ(t∗), the

upper bound of r for which an equilibrium is supported, is also decreasing in n. Without

this, r could be such that for low n only a babbling equilibrium exists while for some locally

higher n a non-trivial equilibrium leading to a higher payoff exists.8

To prove the last part of the proposition it suffices to show that t∗ → 0 as n increases,

and Π → E[θ] from above. The latter statement follows from the former and the fact that

in any equilibrium the DM’s payoff is bounded below by the babbling payoff E[θ]. Thus it

remains to show limn→∞ t∗n = 0. First, if ever t∗i = 0 the statement immediately follows since

then t∗j = 0 for all j > i. Otherwise there does not exist an i such that t∗i = 0, and as argued

in the proof of Proposition 5(ii), G′(t∗) ≤ 1, and so for any t

lim
n→∞

G(t;n) = lim
n→∞

∫ ∞

t

θdF (θ)
δF (t)n−1

1− δF (t)n
=

∫ ∞

t

θdF (θ) lim
n→∞

δF (t)n−1

1− δF (t)n
=

∫ ∞

t

θdF (θ)×0 = 0,

which then implies limn→∞ t∗n = 0.

8For instance, in Example 3 an equilibrium with communication can be supported when r ≤ 0.484 if
n = 1 and for r ≤ 0.515 if n = 2. Thus if r = 0.51 babbling ensues with one expert, giving the DM a payoff
of 0.51, while a non-babbling equilibrium resulting in a payoff of 0.735 exists with two experts.
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An example: the symmetric beta distribution

Let θi ∼ B (α, β) where we specify α = β > 0 so that the distribution is symmetric. The

Beta distribution has full support on (0, 1), and with our assumptions E [θi] = 1
2
while

V ar [θi] =
1

4(2α+1)
, so lowering α constitutes a mean-preserving spread.

Proposition 8 An equilibrium exists if and only if α < α̂n for some α̂n > 0. Additionally,

the equilibrium threshold is decreasing in α.

Proof If an equilibrium threshold t∗ exists it is implicitly defined by H (t) = 0, where

H (t) = G (t)− t. By the implicit function theorem

∂t

∂α
(t∗) = −

∂H
∂α

(t∗)
∂H
∂t

(t∗)
,

and Lemma 2(iii) implies ∂H
∂t

(t∗) < 0 (except for the knife-edge case G′ (t∗) = 1, where

higher α implies the fixed point no longer exists). Thus it suffices to show ∂H
∂α

(t∗) < 0, which

is established if ∂G
∂α

(t∗) < 0. Now, any fixed point t∗ < 1
2
by Lemma 2(iii). But then by the

properties of the symmetric Beta distribution ∂F
∂α

< 0 and ∂E[θ|α;θ>t]
∂α

< 0. Writing G as

(
δF (t)n−1 (1− F (t))

1− δF (t)n

)
E [θ|θ > t] , (10)

it suffices to show the term in the large parentheses decreases in α. Since the denominator

is increasing in α it suffices to show that

∂

∂α

(
δF (t)n−1 (1− F (t))

)
< 0 ⇐⇒ δ

∂F

∂α
F (t)n−2 ( (1− F (t)) (n− 1)− F (t)

)
< 0,

which holds since t∗ < 1
2
implies F (t∗) < 1

2
and ∂F

∂α
< 0, and thus (1− F (t)) (n− 1)−F (t) >

0 since n ≥ 2.

By Proposition 2, to establish existence of t∗ > 0 it suffices to show that G (t) > t is

possible. For t ∈
(
0, 1

2

)
, limα→0E [θ|θ > t] = 1, limα→0 F (t) = 1

2
, and thus using line 10

30



gives

lim
α→0

G (t) =
δ
(
1
2

)n−1 (1
2

)
1− δ

(
1
2

)n × 1 =
δ
2n

1− δ
2n

> 0.

Thus for any n there is a t and an αn depending on n such that G (t) > t, and furthermore

since ∂t
∂α

< 0 this remains true for α < αn.

Notice that when α = 1 the distribution is uniform, and letting n = 2 we find G (t) =

t
1+t

(
1+t
2

)
= t

2
< t except for the trivial solution t = 0. Given Proposition 5 we can conclude

that for any n > 1 and δ no equilibrium exists when α ≥ 1.

Proof of Proposition 7

We establish the result without time discounting and then by the continuity of the DM’s

payoff in δ the result obtains. When δ = 1 the DM’s payoff is determined solely by the

expected value of the project he accepts, which is increasing in the threshold used in that

period by the expert who recommended it. Free from competition, consulting the same single

expert each period will result in the DM’s first-best outcome. Furthermore, this outcome

strictly dominates the payoff from any other equilibrium, since in any equilibrium in which

more than one expert’s project would be accepted by the DM the experts will use a lower

threshold than if they were free from competition, owing to their lower continuation value.

The only possible exception are equilibria in which the DM ignores all experts for finitely

many periods, followed by the same single expert being consulted indefinitely thereafter.

However, such equilibria are dominated by the candidate equilibrium when δ < 1. Finally,

an argument similar to that in the proof of Proposition 6 shows the set of r supporting a

non-babbling equilibrium decreases in the number of non-babbling experts in each period

and thus if babbling must occur when consulting the same single expert it must also occur

in any other configuration of experts consulted over time.
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